首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Price TA  Wedell N 《Genetica》2008,132(3):295-307
Females of many species mate with more than one male (polyandry), yet the adaptive significance of polyandry is poorly understood. One hypothesis to explain the widespread occurrence of multiple mating is that it may allow females to utilize post-copulatory mechanisms to reduce the risk of fertilizing their eggs with sperm from incompatible males. Selfish genetic elements (SGEs) are ubiquitous in eukaryotes, frequent sources of reproductive incompatibilities, and associated with fitness costs. However, their impact on sexual selection is largely unexplored. In this review we examine the link between SGEs, male fertility and sperm competitive ability. We show there is widespread evidence that SGEs are associated with reduced fertility in both animals and plants, and present some recent data showing that males carrying SGEs have reduced paternity in sperm competition. We also discuss possible reasons why male gametes are particularly vulnerable to the selfish actions of SGEs. The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males.  相似文献   

2.
Selfish genetic elements (SGEs) are ubiquitous in eukaryotes and bacteria, and make up a large part of the genome. They frequently target sperm to increase their transmission success, but these manipulations are often associated with reduced male fertility. Low fertility of SGE-carrying males is suggested to promote polyandry as a female strategy to bias paternity against male carriers. Support for this hypothesis is found in several taxa, where SGE-carrying males have reduced sperm competitive ability. In contrast, when SGEs give rise to reproductive incompatibilities between SGE-carrying males and females, polyandry is not necessarily favoured, irrespective of the detrimental impact on male fertility. This is due to the frequency-dependent nature of these incompatibilities, because they will decrease in the population as the frequency of SGEs increases. However, reduced fertility of SGE-carrying males can prevent the successful population invasion of SGEs. In addition, SGEs can directly influence male and female mating behaviour, mating rates and reproductive traits (e.g. female reproductive tract length and male sperm). This reveals a potent and dynamic interaction between SGEs and polyandry highlighting the potential to generate sexual selection and conflict, but also indicates that polyandry can promote harmony within the genome by undermining the spread of SGEs.  相似文献   

3.
Selfish genetic elements (SGEs) are ubiquitous in animals and often associated with low male fertility due to reduced sperm number in male carriers. In the fruit fly Drosophila pseudoobscura , the meiotic driving X chromosome "sex ratio" kills Y-bearing sperm in carrier males (SR males), resulting in female only broods. We competed SR males against the ejaculates of noncarrying standard males (ST males), and quantified the number of sperm transferred by SR and ST males to females. We show that SR males are very poor sperm competitors, which is partly related to transfer of fewer sperm during mating. However, sperm numbers alone cannot explain the observed paternity reduction, indicating SR males' sperm may be of reduced quality, possibly due to damage during the killing of the noncarrying Y-sperm. The reduction in sperm competitive ability due to SR is large enough to potentially stabilize the spread of sex ratio drive through populations. The poor sperm competitive ability of SR males coupled with their low fitness as mates could favor increased remating by females to reduce paternity by SR males. Given the generally poor performance of SGE-carrying males in sperm competition, this may generate strong selective pressure favoring polyandry in many species.  相似文献   

4.
Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males. We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype in house mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge, the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry.  相似文献   

5.
The extent of female multiple mating (polyandry) can strongly impact on the intensity of sexual selection, sexual conflict, and the evolution of cooperation and sociality. More subtly, polyandry may protect populations against intragenomic conflicts that result from the invasion of deleterious selfish genetic elements (SGEs). SGEs commonly impair sperm production, and so are likely to be unsuccessful in sperm competition, potentially reducing their transmission in polyandrous populations. Here, we test this prediction in nature. We demonstrate a heritable latitudinal cline in the degree of polyandry in the fruitfly Drosophila pseudoobscura across the USA, with northern population females remating more frequently in both the field and the laboratory. High remating was associated with low frequency of a sex-ratio-distorting meiotic driver in natural populations. In the laboratory, polyandry directly controls the frequency of the driver by undermining its transmission. Hence we suggest that the cline in polyandry represents an important contributor to the cline in sex ratio in nature. Furthermore, as the meiotic driver causes sex ratio bias, variation in polyandry may ultimately determine population sex ratio across the USA, a dramatic impact of female mating decisions. As SGEs are ubiquitous it is likely that the reduction of intragenomic conflict by polyandry is widespread.  相似文献   

6.
Polyandry-induced sperm competition is assumed to impose costson males through reduced per capita paternity success. In contrast,studies focusing on the consequences of polyandry for femalesreport increased oviposition rates and fertility. For thesespecies, there is potential for the increased female fecundityassociated with polyandry to offset the costs to males of sharedpaternity. We tested this hypothesis by comparing the proportionand number of offspring sired by males mated with monandrousand polyandrous females in the hide beetle, Dermestes maculates,both for males mating with different females and for males rematingwith the same female. In 4 mating treatments, monandrous femalesmated either once or twice with the same male and polyandrousfemales mated either twice with 2 different males or thricewith 2 males (where 1 male mated twice). Polyandrous and twice-matingmonandrous females displayed greater fecundity and fertilitythan singly mating monandrous females. Moreover, males rematedto the same female had greater paternity regardless of whetherthat female mated with another male. In both polyandrous treatments,male mating order did not affect paternity success. Finally,although the proportion of eggs sired decreased if a male matedwith a polyandrous female, multiply mating females or femalesthat remated with a previous mate laid significantly more eggsand thus the actual number of eggs sired was comparable. Thus,males do not necessarily accrue a net fitness loss when matingwith polyandrous females. This may explain the absence of anyobvious defensive paternity-protection traits in hide beetlesand other species.  相似文献   

7.
Although classically thought to be rare, female polyandry is widespread and may entail significant fitness benefits. If females store sperm over extended periods of time, the consequences of polyandry will depend on the pattern of sperm storage, and some of the potential benefits of polyandry can only be realized if sperm from different males is mixed. Our study aimed to determine patterns and consequences of polyandry in an amphibian species, the fire salamander, under fully natural conditions. Fire salamanders are ideal study objects, because mating, fertilization and larval deposition are temporally decoupled, females store sperm for several months, and larvae are deposited in the order of fertilization. Based on 18 microsatellite loci, we conducted paternity analysis of 24 female‐offspring arrays with, in total, over 600 larvae fertilized under complete natural conditions. More than one‐third of females were polyandrous and up to four males were found as sires. Our data clearly show that sperm from multiple males is mixed in the female's spermatheca. Nevertheless, paternity is biased, and the most successful male sires on average 70% of the larvae, suggesting a ‘topping off’ mechanism with first‐male precedence. Female reproductive success increased with the number of sires, most probably because multiple mating ensured high fertilization success. In contrast, offspring number was unaffected by female condition and genetic characteristics, but surprisingly, it increased with the degree of genetic relatedness between females and their sires. Sires of polyandrous females tended to be genetically similar to each other, indicating a role for active female choice.  相似文献   

8.

Background

Mothers that mate with multiple males often produce higher quality offspring than mothers that mate with a single male. By engaging in polyandry, mothers may increase their chances of mating with a compatible male or promote sperm competition - both of which act to increase maternal fitness via the biasing of the paternity of offspring. Surprisingly, mating with multiple males, can carry benefits without biasing paternity and may be due simply to differences in genetic diversity between monandrous and polyandrous clutches but role of genetic diversity effects in driving the benefits of polyandry remains poorly tested. Disentangling indirect, genetic benefits from genetic diversity effects is challenging but crucial if we are to understand the selection pressures acting to promote polyandry.

Methodology/Principal Findings

Here, we examine the post-fertilisation benefits of accessing the sperm of multiple males in an externally fertilising polychaete worm. Accessing the sperm of multiple males increases offspring performance but this benefit was driven entirely by genetic diversity effects and not by the biasing of paternity at fertilisation.

Conclusions/Significance

Previous studies on polyandry should be interpreted cautiously as genetic diversity effects alone can explain the benefits of polyandry yet these diversity effects may be difficult to disentangle from other mechanisms. We suggest that future studies use a modified experimental design in order to discriminate between genetic diversity effects and indirect, genetic benefits.  相似文献   

9.
As inbreeding is costly, it has been suggested that polyandry may evolve as a means to reduce the negative fitness consequences of mating with genetically related males. While several studies provide support for this hypothesis, evidence of pure post-copulatory mechanisms capable of biasing paternity towards genetically unrelated males is still lacking; yet these are necessary to support inbreeding avoidance models of polyandry evolution. Here we showed, by artificially inseminating a group of female guppies with an equal number of sperm from related (full-sib) and unrelated males, that sperm competition success of the former was 10 per cent lower, on average, than that of the unrelated male. The paternity bias towards unrelated males was not due to differential embryo survival, as the size of the brood produced by control females, which were artificially inseminated with the sperm of a single male, was not influenced by their relatedness with the male. Finally, we collected ovarian fluid (OF) from virgin females. Using computer-assisted sperm analysis, we found that sperm velocity, a predictor of sperm competition success in the guppy, was significantly lower when measured in a solution containing the OF from a sister as compared with that from an unrelated female. Our results suggest that sperm-OF interaction mediates sperm competition bias towards unrelated mates and highlight the role of post-copulatory mechanisms in reducing the cost of mating with relatives in polyandrous females.  相似文献   

10.
Polyandry is a widespread mating strategy, found in a broad number of taxa. Among amphibians, polyandry, and multiple paternity as its direct consequence, is quite common in salamanders, especially within Ambystomatidae and Plethodontidae. In the suborder Salamadroidea the existence of two different types of spermatheca allows several kinds of polyandry strategies to appear. We used multilocus microsatellite genotyping to investigate the presence of polyandry and its effects on the paternity in a previously unstudied species with a terrestrial habit, Salamandrina perspicillata. We collected gravid females in their natural habitat and analysed the paternity of the offspring by using the software COLONY and GERUD. We found that all the analysed clutches had been fertilized by 2–4 males and that in every clutch one male had sired most of the offspring. Our results confirmed that polyandry is an important component of the mating system of this species, suggesting that females are able to recognize the sperm of the male that will provide a genetic benefit for their offspring. We found evidence of female cryptic choice based on males' genetic dissimilarity: (1) males who sire most of the offspring of a given female tend to be genetically different from their sexual partner; (2) a same male, when mated with two females, sired a proportion of the offspring inversely correlated with his genetic similarity to the female; (3) genetic dissimilarity between mating partners is positively correlated with offspring heterozygosity. According to the genetic compatibility model, we hypothesized that in the observed non resource‐based mating system the indirect benefit for the offspring should reflect interactions between paternal and maternal genomes rather than the inheritance of the so‐called ‘good genes’. This study suggests a polygynandrous mating system for the study species and provides the first report in a salamandrid species in natural condition that reproductive success of males is correlated with genetic dissimilarity between mates. Moreover, we found evidence of an offspring benefit (higher heterozygosity) derived from the most genetically dissimilar father.  相似文献   

11.
Ongoing ambitions are to understand the evolution of costly polyandry and its consequences for species ecology and evolution. Emerging patterns could stem from feed‐back dynamics between the evolving mating system and its genetic environment, defined by interactions among kin including inbreeding. However, such feed‐backs are rarely considered in nonselfing systems. We use a genetically explicit model to demonstrate a mechanism by which inbreeding depression can select for polyandry to mitigate the negative consequences of mating with inbred males, rather than to avoid inbreeding, and to elucidate underlying feed‐backs. Specifically, given inbreeding depression in sperm traits, costly polyandry evolved to ensure female fertility, without requiring explicit inbreeding avoidance. Resulting sperm competition caused evolution of sperm traits and further mitigated the negative effect of inbreeding depression on female fertility. The evolving mating system fed back to decrease population‐wide homozygosity, and hence inbreeding. However, the net overall decrease was small due to compound effects on the variances in sex‐specific reproductive success and paternity skew. Purging of deleterious mutations did not eliminate inbreeding depression in sperm traits or hence selection for polyandry. Overall, our model illustrates that polyandry evolution, both directly and through sperm competition, might facilitate evolutionary rescue for populations experiencing sudden increases in inbreeding.  相似文献   

12.
When females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number. Microsatellites can be used to estimate the number of mates represented in females' sperm stores and the number of sires contributing to their offspring, enabling comparisons both of polyandry and of two components of postcopulatory selection: the proportion of males that mate but fail to sire offspring, and the degree of paternity skew among the males that do sire offspring. Here, we estimate the number of mates and sires among wild females in the Hawaiian swordtail cricket Laupala cerasina. We compare these estimates to the actual mating rates and paternity shares we observed in a semi‐natural population. Our results show that postcopulatory sexual selection operates strongly in this species: wild females mated with an average minimum of 3.6 males but used the sperm from only 58% of them. Furthermore, among the males that did sire offspring, paternity was significantly skewed. These patterns were similar to those observed in the field enclosure, where females mated with an average of 5.7 males and used the sperm from 62% of their mates, with paternity significantly skewed among the sires.  相似文献   

13.
Female promiscuity has broad implications for individual behaviour, population genetics and even speciation. In the field cricket Gryllus bimaculatus, females will mate with almost any male presented to them, despite receiving no recorded direct benefits. Previous studies have shown that female crickets can benefit from polyandry through increased hatching success of their eggs. There is evidence that this effect is driven by the potential of polyandrous females to avoid fertilizing eggs with sperm from genetically incompatible males. We provide direct evidence supporting the hypothesis that polyandry is a mechanism to avoid genetic incompatibilities resulting from inbreeding. Using microsatellite markers we examined patterns of paternity in an experiment where each female mated with both a related and an unrelated male in either order. Overall, unrelated males were more successful in gaining paternity than were related males, but this effect was driven by a much greater success of unrelated males when they were the first to mate.  相似文献   

14.
The adaptive significance of polyandry is an intensely debated subject in sexual selection. For species with male infanticidal behaviour, it has been hypothesized that polyandry evolved as female counterstrategy to offspring loss: by mating with multiple males, females may conceal paternity and so prevent males from killing putative offspring. Here we present, to our knowledge, the first empirical test of this hypothesis in a combined laboratory and field study, and show that multiple mating seems to reduce the risk of infanticide in female bank voles Myodes glareolus. Our findings thus indicate that females of species with non-resource based mating systems, in which males provide nothing but sperm, but commit infanticide, can gain non-genetic fitness benefits from polyandry.  相似文献   

15.
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.  相似文献   

16.
The maternally inherited bacterium Wolbachia pipientis imposes significant fitness costs on its hosts. One such cost is decreased sperm production resulting in reduced fertility of male Drosophila simulans infected with cytoplasmic incompatibility (CI) inducing Wolbachia. We tested the hypothesis that Wolbachia infection affects sperm competitive ability and found that Wolbachia infection is indeed associated with reduced success in sperm competition in non-virgin males. In the second male role, infected males sired 71% of the offspring whereas uninfected males sired 82% of offspring. This is the first empirical evidence indicating that Wolbachia infection deleteriously affects sperm competition and raises the possibility that polyandrous females can utilize differential sperm competitive ability to bias the paternity of broods and avoid the selfish manipulations of Wolbachia. This suggests a relationship between Wolbachia infection and host reproductive strategies. These findings also have important consequences for Wolbachia population dynamics because the transmission advantage of Wolbachia is likely to be undermined by sperm competition.  相似文献   

17.
I have examined the adaptive significance of polyandry using the Australian field cricket Teleogryllus oceanicus. Previous studies of polyandry have examined differences in offspring production by females mated multiply to a single male or females mated multiply to different males. Here I combine this approach with a study of parentage of offspring produced in the later group. Females mated to two different males had a higher proportion of their eggs hatching than did females mating twice with a single male. Offspring fitness parameters were not effected. There was little evidence to suggest that females elevate their hatching success via fertilizing their eggs with sperm from genetically compatible males. Although the average paternity points towards random sperm mixing, there was considerable individual variation in sperm competition success. Patterns of parentage were consistent across females mating twice or four times. Sperm competition success was not related to offspring viability or performance. Thus, the notion that competitively superior sperm produce competitively superior offspring is not supported either. The mechanism underlying increased hatching success with polyandry requires further study.  相似文献   

18.
Few aspects of biology are linked to so many evolutionary conflicts as sperm production and fertilization. Segregation distortion and maternal inheritance of cytoplasmic genes, causing maladapted males, are common sources of variation in the competitive ability of sperm, leading males to vary in their intrinsic fertility. Here, I theoretically analyze the effect of such variation in male intrinsic fertility on ejaculate investment. The model reveals that with increasing variation in male fertility, males should overall spend less resources on their ejaculates. Furthermore, if males differing in intrinsic fertility are able to invest differently in sperm production, there are two contrasting outcomes. Typically, less fertile males should invest more. However, if female mating frequency is relatively low and differences between males relatively large, the most common male genotype should invest more. These results have important consequences both for the understanding of sperm competition strategies as well as for the evolution of female polyandry and female mating preferences.  相似文献   

19.
Understanding why females mate multiply is a major issue in evolutionary ecology. We investigated the consequences of an asynchronous arrival pattern on male competition and multiple paternity in the apparently monoandrous agile frog ( Rana dalmatina ). The largest frogs arrived first and both males and females lost weight significantly during the spawning period. Asynchronous arrival at breeding sites resulted in a male-biased operational sex ratio (OSR). The OSR was more strongly male-biased at the beginning and at the end of the breeding period when the number of satellite males increased. All females mated only once, but multiple paternity within clutches occurred at the beginning and the end of the breeding period. The influence of asynchronous arrival and biased sex ratio suggests that reduced variance or bet-hedging promoting female fitness had only a reduced role in the evolution of polyandry, and polyandry is likely to be associated with male benefits. Polyandry in frogs can be explained either by forced mating as a result of sexual conflict or by clutch piracy. By modifying intrasexual competition, asynchronous arrival and changes in OSR may have a decisive influence upon the evolution of mating systems and favour both polyandry and stable coexistence of alternative mating behaviour.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 191–200.  相似文献   

20.
Behavioural studies have led to the perception that lekking species experience a high male reproductive skew as a consequence of females’ selective mate choice. In addition, observations suggest that females copulate only once and therefore polyandry seems unlikely as females are supposed to choose the best male available. In order to analyse the mating strategy of the Houbara bustard, an endangered lekking species under reinforcement in eastern Morocco, we used microsatellite data to perform paternity analyses. None of our observations followed common expectations under a lek mating system: we found no male reproductive skew suggesting no apparent selective female mate choice and no apparent male benefit from lekking. In contrast, a high level of polyandry (60 % of the nests) was recorded suggesting that sperm competition may operate. In addition, we present another case of conspecific brood parasitism in a lekking species and this was an unexpected alternative strategy for a species presenting high parental cost and low fecundity. The increasing number of studies contradicting common assumptions on lekking species suggests that alternative breeding strategies such as males pursuing an off‐lek mating strategy, female polyandry and even conspecific brood parasitism might be more widespread in lekking species than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号