首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Cancer development is complex and involves several layers of interactions and pleotropic signaling mechanisms leading to progression. Cancer cells associate with resident stromal fibroblasts, smooth muscle cells, macrophages, endothelium, neurons and migrating cells at metastatic sites and phenotypically and genotypically activate them. These become an integral part of the cancer cell community through activated cell signaling mechanisms. During this process, the cancer cells and cells in the cancer microenvironment “co-evolve” in part due to oxidative stress, and acquire the ability to mimic other cell types (which can be termed osteomimicry, vasculomimicry, neuromimicry and stem cell mimicry), and undergo transition from epithelium to mesenchyme with definitive morphologic and behavioral modifications. In our laboratory, we demonstrated that prostate cancer cells co-evolve in their genotypic and phenotypic characters with stroma and acquire osteomimetic properties allowing them to proliferate and survive in the skeleton as bone metastasis. Several signaling interactions in the bone microenvironment, mediated by reactive oxygen species, soluble and membrane bound factors, such as superoxide, β2-microglobulin and RANKL have been described. Targeting the signaling pathways in the cancer-associated stromal microenvironment in combination with known conventional therapeutic modalities could have a synergistic effect on cancer treatment. Since cancer cells are constantly interacting and acquiring adaptive and survival changes primarily directed by their microenvironment, it is imperative to delineate these interactions and co-target both cancer and stroma to improve the treatment and overall survival of cancer patients.  相似文献   

16.
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. The tumor–immune and the tumor–host interactions are characterized to reproduce experimental results. A thorough dynamical analysis of the model is carried out, showing its capability to explain theoretical and empirical knowledge about tumor development. A chemotherapy treatment reproducing different experiments is also introduced. We believe that this simple model can serve as a foundation for the development of more complicated and specific cancer models.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号