首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
花生种子耐脱水力的获得与热稳定蛋白的关系   总被引:9,自引:0,他引:9  
花生(ArachishypogaeaL.)种子的耐脱水能力在果针入土后45d以后的胚胎发育期逐渐增加,与一组9~15.5kD低分子量热稳定蛋白的丰富表达有关。缓慢干燥可以诱导不耐脱水的果针入土后25d及35d花生胚获得耐脱水能力并同时诱导胚轴表达这组热稳定蛋白。成熟脱水促进花生胚耐脱水能力的获得,并增加了花生球蛋白的热稳定性。  相似文献   

2.
Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity.  相似文献   

3.
Onset of desiccation tolerance during development of the barley embryo   总被引:13,自引:0,他引:13  
D. Bartels  M. Singh  F. Salamini 《Planta》1988,175(4):485-492
We have investigated events which take place in the developing barley (Hordeum vulgare L.) embryo during its acquisition of desiccation tolerance. Excised embryos are capable of precocious germination as early as 8 d after pollination (DAP). At this age, however, they are not capable of resisting a desiccation treatment which induces a loss of 96–98% of their initial water content. At 16 DAP the embryos germinate despite the drastic drying treatment. The pattern of in-vivo and in-vitro proteins synthesized by the developing embryos from 12 DAP (desiccation-intolerant) and 16 DAP (desiccation-tolerant) were compared. A set of 25–30 proteins was identified which is denovo synthesized or enhanced during the developmental period leading to desiccation tolerance. Abscisic acid (ABA; 100 M) applied in vitro for 5 d to 12-DAP embryos induces desiccation tolerance and represses a subset of polypeptides preferentially associated with 16-DAP embryos. During in vitro culture of barley embryos ABA stimulates the appearance of a set of proteins and prevents the precocious germination allowing embryogenesis to continue in vitro. It also suppresses a set of germination-related proteins which appear 4 h after the incubation of the dissected embryo on a germination medium without ABA. Almost all mRNAs remain functional for translation when isolated embryos are dried at the desiccation-intolerant and tolerant stages of embryo development.Abbreviations ABA abscisic acid - DAP days after pollination - GM germination medium - poly(A)RNA polyadenylated RNA - SDS sodium dodecyl sulfate  相似文献   

4.
玉米种子萌发能力和耐脱水能力的形成   总被引:7,自引:0,他引:7  
以玉米品种“粤单9117”为材料,研究了种子发育过程中萌发能力和耐脱水能力的获得。玉米种子的生理成熟期约为43DAP(授粉后天数)。胚萌发能力的获得是在14-21DAP、耐脱水能力的获得出现在25-28DAP。胚的耐脱水能力在28DAP后仍不断得到加强。耐脱水能力的获得与细胞膜的发育及受保护的程度密切相关。脱水有利于不同发育时期的胚和种子的萌发。  相似文献   

5.
Maize seeds were used to identify the key embryo proteins involved in desiccation tolerance during development and germination. Immature maize embryos (28N) during development and mature embryos imbibed for 72 h (72HN) are desiccation sensitive. Mature maize embryos (52N) during development are desiccation tolerant. Thiobarbituric acid reactive substance and hydrogen peroxide contents decreased and increased with acquisition and loss of desiccation tolerance, respectively. A total of 111 protein spots changed significantly (1.5 fold increase/decrease) in desiccation-tolerant and -sensitive embryos before (28N, 52N and 72HN) and after (28D, 52D and 72HD) dehydration. Nine pre-dominantly proteins, 17.4 kDa Class I heat shock protein 3, late embryogenesis abundant protein EMB564, outer membrane protein, globulin 2, TPA:putative cystatin, NBS-LRR resistance-like protein RGC456, stress responsive protein, major allergen Bet v 1.01C and proteasome subunit alpha type 1, accumulated during embryo maturation, decreased during germination and increased in desiccation-tolerant embryos during desiccation. Two proteins, Rhd6-like 2 and low-molecular-weight heat shock protein precursor, showed the inverse pattern. We infer that these eleven proteins are involved in seed desiccation tolerance. We conclude that desiccation-tolerant embryos make more economical use of their resources to accumulate protective molecules and antioxidant systems to deal with maturation drying and desiccation treatment.  相似文献   

6.
The ability of seeds to withstand desiccation develops during embryogenesis and differs considerably among species. Paddy rice (Oryza sativa L.) grains readily survive dehydration to as low as 2% water content, whereas North American wild rice (Zizania palustris var interior [Fasset] Dore) grains are not tolerant of water contents below 6% and are sensitive to drying and imbibition conditions. During embryogenesis, dehydrin proteins, abscisic acid (ABA), and saccharides are synthesized, and all have been implicated in the development of desiccation tolerance. We examined the accumulation patterns of dehydrin protein, ABA, and soluble saccharides (sucrose and oligosaccharides) of rice embryos and wild rice axes in relation to the development of desiccation tolerance during embryogenesis. Dehydrin protein was detected immunologically with an antibody raised against a conserved dehydrin amino acid sequence. Both rice and wild rice embryos accumulated a 21-kD dehydrin protein during development, and an immunologically related 38-kD protein accumulated similarly in rice. Dehydrin protein synthesis was detected before desiccation tolerance had developed in both rice embryos and wild rice axes. However, the major accumulation of dehydrin occurred after most seeds of both species had become desiccation tolerant. ABA accumulated in wild rice axes to about twice the amount present in rice embryos. There were no obvious relationships between ABA and the temporal expression patterns of dehydrin protein in either rice or wild rice. Wild rice axes accumulated about twice as much sucrose as rice embryos. Oligosaccharides were present at only about one-tenth of the maximum sucrose concentrations in both rice and wild rice. We conclude that the desiccation sensitivity displayed by wild rice grains is not due to an inability to synthesize dehydrin proteins, ABA, or soluble carbohydrates.  相似文献   

7.
A proteomic analysis was performed on the heat stable protein fraction of imbibed radicles of Medicago truncatula seeds to investigate whether proteins can be identified that are specifically linked to desiccation tolerance (DT). Radicles were compared before and after emergence (2.8 mm long) in association with the loss of DT, and after reinduction of DT by an osmotic treatment. To separate proteins induced by the osmotic treatment from those linked with DT, the comparison was extended to 5 mm long emerged radicles for which DT could no longer be reinduced, albeit that drought tolerance was increased. The abundance of 15 polypeptides was linked with DT, out of which 11 were identified as late embryogenesis abundant proteins from different groups: MtEm6 (group 1), one isoform of DHN3 (dehydrins), MtPM25 (group 5), and three members of group 3 (MP2, an isoform of PM18, and all the isoforms of SBP65). In silico analysis revealed that their expression is likely seed specific, except for DHN3. Other isoforms of DNH3 and PM18 as well as three isoforms of the dehydrin Budcar5 were associated with drought tolerance. Changes in the abundance of MtEm6 and MtPM25 in imbibed cotyledons during the loss of DT and in developing embryos during the acquisition of DT confirmed the link of these two proteins with DT. Fourier transform infrared spectroscopy revealed that the recombinant MtPM25 and MtEm6 exhibited a certain degree of order in the hydrated state, but that they became more structured by adopting alpha helices and beta sheets during drying. A model is presented in which DT-linked late embryogenesis abundant proteins might exert different protective functions at high and low hydration levels.  相似文献   

8.
Maturation proteins associated with desiccation tolerance in soybean   总被引:17,自引:2,他引:15       下载免费PDF全文
A set of proteins that accumulates late in embryogenesis (Lea proteins) has been hypothesized to have a role in protecting the mature seed against desiccation damage. A possible correlation between their presence and the desiccation tolerant state in soybean seeds (Glycine max L. Chippewa) was tested. Proteins that showed the same temporal pattern of expression as that reported for Lea proteins were identified in the axes of soybean. They were distinct from the known storage proteins and were resistant to heat coagulation. The level of these “maturation” proteins was closely correlated with desiccation tolerance both in the naturally developing and in the germinating seed: increasing at 44 days after flowering, when desiccation tolerance was achieved, and decreasing after 18 hours of imbibition, when desiccation tolerance was lost. During imbibition, 100 micromolar abscisic acid or Polyethylene glycol-6000 (−0.6 megapascals) delayed disappearance of the maturation proteins, loss of desiccation tolerance, and germination. During maturation, desiccation tolerance was prematurely induced when excised seeds were dried slowly but not when seeds were held for an equivalent time at high relative humidity. In contrast, maturation proteins were induced under both conditions. We conclude that maturation proteins may contribute to desiccation tolerance of soybean seeds, though they may not be sufficient to induce tolerance by themselves.  相似文献   

9.
In contrast to wild-type seeds of Arabidopsis thaliana and to seeds deficient in (aba) or insensitive to (abi3) abscisic acid (ABA), maturing seeds of recombinant (aba,abi3) plants fail to desiccate, remain green, and lose viability upon drying. These double-mutant seeds acquire only low levels of the major storage proteins and are deficient in several low mol wt polypeptides, both soluble and bound, and some of which are heat stable. A major heat-stable glycoprotein of more than 100 kilodaltons behaves similarly; during seed development, it shows a decrease in size associated with the abi3 mutation. In seeds of the double mutant from 14 to 20 days after pollination, the low amounts of various maturation-specific proteins disappear and many higher mol wt proteins similar to those occurring during germination are induced, but no visible germination is apparent. It appears that in the aba,abi3 double mutant seed development is not completed and the program for seed germination is initiated prematurely in the absence of substances protective against dehydration. Seeds may be made desiccation tolerant by watering the plants with the ABA analog LAB 173711 or by imbibition of isolated immature seeds, 11 to 15 days after pollination, with ABA and sucrose. Whereas sucrose stimulates germination and may protect dehydration-sensitive structures from desiccation damage, ABA inhibits precocious germination and is required to complete the program for seed maturation and the associated development of desiccation tolerance.  相似文献   

10.
黄皮种子发育晚期,胚内核酸、蛋白质合成能力增强,而花生胚的核酸、蛋白质合成能力在发育晚期则呈下降趋势。黄皮胚的发育在达到生理成熟后维持着活跃的生理代谢并转入萌发状态;而花生胚的代谢活性逐步降低并转入生理静止状态。脱水处理引起生理成熟期黄皮胚核酸、蛋白质合成能力急剧下降,核酸水解酶活性增强。不同程度脱水的黄皮胚吸胀24h,核酸、蛋白质的合成能力随脱水程度的加深而降低;生物大分子代谢能力的变化是顽拗性  相似文献   

11.
萌发中花生胚轴的耐干性与热稳定蛋白   总被引:6,自引:0,他引:6  
成熟花生种子吸胀18 h 发芽率达100 % 。在这18 h 的范围内,胚轴即使经干燥处理,萌发生长率仍保持100 % ,而热稳定蛋白含量变化很小。吸胀24 h 后,经干燥的花生胚完全丧失萌发生长能力。SDSPAGE和双向电泳表明,花生胚轴的热稳定蛋白主要是贮藏蛋白,该蛋白中的花生球蛋白大亚基,伴花生球蛋白I和2S 蛋白的降解与胚轴的耐干性丧失有关。  相似文献   

12.
The acquisition of desiccation tolerance (DT) in developing beech (Fagus sylvatica L.) seeds and the role of a dehydrin protein in this process were investigated. DT was determined by measurement of electrolyte leakage and germination capacity after drying to 10–12% moisture content (MC). In addition to mass maturity, the presence of heat-stable proteins, dehydrin accumulation and the peak of ABA content were measured in relation to the acquisition of DT. Mass maturity was achieved at 16 weeks after flowering (WAF). The germination capacity increased from 8% at 12 WAF to 80–90% after 16 WAF. Cell membrane integrity, measured as a decrease in electrolyte leakage after desiccation, was acquired at 16 WAF. Additionally, the ratio of heat-stable to soluble proteins was the highest at 16 WAF. One dehydrin-like protein with a molecular mass 44 kDa, named DHN44, was detected in embryonic axes at 16 WAF and in cotyledons at 17 WAF, and its gradual accumulation was observed in mature seeds. With regard to the acquisition of DT, the strongest correlations were detected between electrolyte leakage, DHN44 accumulation, and the percentage of heat-stable proteins. These results suggest that developing beech seeds become tolerant to desiccation at 16 WAF. The effect of desiccation and ABA treatment on DHN44 synthesis was tested before (14 WAF) and after the DT acquisition (18 WAF). Depending on the maturation stage desiccation and ABA treatment can induce or enlarge DHN44 expression.  相似文献   

13.
成熟脱水对种子发育和萌发的作用   总被引:9,自引:2,他引:7  
成熟脱水是正常性种子发育的末端事件。种子在成熟时胚的脱水耐性增加;当种子萌发时胚变得不耐脱水。当种子获得脱水耐性时,糖、蛋白质和抗氧化防御系统等保护性物质积累;当脱水耐性丧失时,这些物质被降解。成熟脱水是种子从发育过程向萌发过程转变的“开关”,它降低发育的蛋白质和mRNA的合成,终止发育事件和促进萌发事件。顽拗性种子不经历成熟脱水的发育阶段,对脱水高度敏感。  相似文献   

14.
玉米胚发育过程中脱水耐性的变化   总被引:2,自引:2,他引:0  
对离体玉米胚脱水耐性的变化以及不同脱水速率对其脱水耐性的影响进行了研究。授粉后16d的玉米胚能耐轻微脱水,含水量从1.45降低到0.28gH2Og-1DW时胚的萌发率为100%,但含水量低于0.1gH2Og-1DW时胚死亡。胚的脱水耐性随着发育逐渐加强,表现为电解质渗漏速率逐渐降低,萌发率和幼苗干重逐渐增加。授粉后20d胚内超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性较高,过氧化氢酶(CAT)活性较低;授粉后24d,这些酶的活性与授粉后20d的正好相反。脂质过氧化产物丙二醛(MDA)在种子发育过程中呈下降趋势。不同脱水速率明显地影响胚的脱水耐性:在慢速脱水到含水量0.1~0.18gH2Og-1DW时,胚的萌发率和幼苗干重比快速脱水高,电解质渗漏速率比快速脱水低;在快速脱水条件下胚中的SOD、APX活性和MDA含量也比慢速脱水高;CAT活性的变化不明显。  相似文献   

15.
XUE Peng  WEN Bin 《Plant Diversity》2015,37(3):293-300
The effects of drying rates on the desiccation tolerance of Citrus maxima ‘Feizhouyou’ seeds at different developmental stages were studied in this paper. For seeds harvested at 130 days after anthesis (DAA), 190 DAA, 245 DAA and 275 DAA, slow dried seeds had higher desiccation tolerance than those rapid dried, with difference at significant level (P < 005). However, such improvement was little for seeds harvested at 155 DAA and 220 DAA, indicating that effect of drying rate on desiccation tolerance depends on seed developmental stages. These results accorded with previous reports on orthodox soybean seeds and maize embrys. It was suggested that the effects of drying rate on desiccation tolerance of intermediate Citrus maxima ‘Feizhouyou’ seeds mainly resulted from expression and accumulation of some desiccation related proteins induced by slow drying. On the required genetic basis, desiccation tolerance in seeds can be induced only at suitable seed developmental stages.  相似文献   

16.
The germinability, vigour, and desiccation tolerance of muskmelon(Cucumis melo L. cv. Top Mark) seeds was studied in relationto changes in seed water content during development within thefleshy fruit. Seed water content (fresh weight basis) declinedfrom 91% to 42% between 10 d and 35 d after anthesis (DAA) (whenmaximum dry weight was attained), then declined more slowlyto a minimum of 35% at 50 DAA before increasing again to 43%at 65 DAA. Fresh intact seeds were first germinable at 25 to30 DAA and attained maximum germination percentages at 45 DAA.Between 15 and 35 DAA, cotyledons, hypocotyls, radicles andepicotyls of isolated embryos (testa and perisperm enveloperemoved) sequentially developed the ability to grow when incubatedon water. Dehydration to water contents less that those attainedwithin the fleshy fruit is not a requirement for developmentof germination capacity of muskmelon seeds. Seeds became tolerantof rapid desiccation after 25 DAA, and drying of immature seeds(25 to 40 DAA) increased their germination percentages uponsubsequent imbibition. Washing, drying, or washing followedby drying increased seedling vigour (root length) as comparedto fresh seeds, which had very poor vigour. Water absorptionisotherms were constructed to test whether changes in water-bindingcomponents were correlated with the development of desiccationtolerance. Isotherms for seeds older than 25 DAA fit well tothe D'Arcy/Watt model, which postulates the existence of high-affinity,low-affinity and multi-molecular water-binding sites. Desiccation-intolerantseeds younger than 25 DAA lacked the component of the absorptionisotherm characteristic of the high-affinity water-binding siteswhich have been hypothesized to confer desiccation tolerance.However, we were unable to determine whether the absence ofhigh-affinity binding characteristics was specifically relatedto desiccation intolerance or was artifactual due to the lossof volatiles when immature seed samples were dried at high temperatures. Key words: Muskmelon, embryo, germination, development, vigour, desiccation  相似文献   

17.
Using antibodies raised against two sunflower small heat shock proteins (sHSPs), we have detected immunologically related proteins in unstressed vegetative tissues from the resurrection plant Craterostigma plantagineum. In whole plants, further accumulation of these polypeptides was induced by heat-shock or water-stress. In desiccation-intolerant Craterostigma callus tissue, we failed to detect sHSP-related polypeptides, but their expression, and the concurrent acquisition of desiccation tolerance was induced by exogenous abscisic acid (ABA) treatment. In untressed plants, the cross-reacting polypeptides were abundant in the roots and lower part of the shoots, where they showed homogeneous tissue-distributions. This constitutive expression is novel for vegetative tissues of higher plants, and resembles the expression patterns of sHSPs in desiccation-tolerant zygotic embryos and germinating seeds.J.A. and C.A. contributed equally to this work and are both considered to be first author  相似文献   

18.
Mature embryonic axes were used for chickpea (Cicer arietinum L.) regeneration via somatic embryogenesis. Qualitative and quantitative estimation of protein profile during somatic embryogenesis by SDS-PAGE and densitometric analysis showed differential expression of various storage proteins at different stages of somatic embryo development, which was compared with the profile of developing seeds. Total protein content in somatic embryos of chickpea increased from globular stage [2.9 μg mg−1(f.m.)] to cotyledonary stage [4.8 μg mg−1(f.m.)] and then started decreasing during onset of maturation and germination [up to 1.5 μg mg−1(f.m.)]. Differential expression of seed storage proteins, late embryogenesis abundant (LEA) proteins and proteins related with stress response were documented at different stages of somatic embryogenesis. Germinating somatic embryos showed degradation products of several seed storage proteins and the appearance of new polypeptides (76.8, 67.6, 49.9 and 34.2 kDa), which were absent during differentiation of somatic embryos. A low molecular mass (17.7 kDa) polypeptide was uniformly present during all stages of somatic embryogenesis and it may belong to a group of stress-related proteins. This study describes the expression of true seed storage proteins like legumin, vicilin, convicilin and their subunits at different stages of somatic embryogenesis, which may serve as excellent markers for embryogenic pathway of regeneration in chickpea.  相似文献   

19.
Kennode, A. R, and Bewley, J. D. 1988. The role of maturationdrying in the transition from seed development to germination.V. Responses of the immature castor bean embryo to isolationfrom the whole seed; a comparison with premature desiccation.—J.exp. Bot. 39: 487–497. Desiccation is an absolute requirement for germination and post-germinativegrowth of whole seeds of the castor bean, whether desiccationis imposed prematurely during development, at 35 d after pollination(DAP) or occurs naturally during late maturation (50–60DAP). Desiccation also plays a direct role in the inductionof post-germinative enzyme synthesis in the cotyledons of embryosin the intact seed; this event is not simply due to the presenceof a growing axis. Isolation of embryos from the developingcastor bean seed at 35 DAP results in both germination and growth,despite the absence of a desiccation event. We have comparedthe metabolic consequences of premature drying of whole seeds(35 DAP) and isolation of the developing 35 DAP embryos. Inboth cases, hydrolytic events involved in the mobilization ofstored protein reserves proceed in a similar manner and mirrorthose events occurring within germinated mature seeds. Thereare differences, however, for post-germinative enzyme (LeuNAaseand isocitrate lyase) production occurs to a lesser extent innon-dried isolated embryos than in those from prematurely dried(35 DAP) whole seeds, or from mature dry (whole) seeds. Desiccationof the 35 DAP whole seed does not alter the subsequent responseof the embryo upon isolation. Thus, while drying does not affectthe metabolism of isolated embryos, it has a profound effecton that of embryos within the intact seed. Tissues surroundingthe embryo in the developing intact seed (viz. the endosperm)maintain its metabolism in a developmental mode and inhibitgermination. This effect of the surrounding tissues can onlybe overcome by drying or by their removal. Key words: Metabolism, isolation, desiccation, embryo, endosperm, castor bean, development, germination  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号