首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
天麻吸收蜜环菌营养机制的细胞学研究   总被引:3,自引:0,他引:3  
天麻(Gastrodia elata BI.)地下块茎皮层内具三种染菌细胞:通道细胞、寄主细胞和消化细胞。超微结构的研究表明,通道细胞被真菌所破坏,寄主细胞与真菌保持共生关系,而消化细胞能反寄生于真菌并从真菌摄取营养。消化细胞首先释放溶酶体小泡消化真菌,然后通过内吞管和内吞泡吸收菌丝细胞质降解后渗漏的可溶性有机大分子物质,后期通过消化泡进一步吞噬和消化不溶性菌丝细胞壁物质。  相似文献   

2.
本研究采用电镜技术研究了种衣剂17号对小麦条锈菌发育的影响。观察结果表明,该种衣剂引起病菌和寄主细胞内发生了一系列变化。病菌菌丝和吸器内脂肪粒和液泡明显增加;菌丝壁和吸器壁呈不规则加厚;菌丝分枝处无隔膜产生或隔膜畸形;有的吸器母细胞产生的畸形入侵栓,大都不能穿透寄主细胞壁,初生吸器外间质内沉积有染色较深的物质,次生吸器可产生多个不规则分枝,但不能扩张膨大;菌丝外渗的物质可能引起寄主细胞的坏死;大多数受侵寄主细胞可分泌形成较大的胼胝质,有时寄主细胞分泌的物质可将吸器体完全包围起来。上述结果表明,种衣剂17号不仅可直接作用于条锈菌,而且也可通过影响寄主而间接地影响病菌。  相似文献   

3.
Intracellular hyphae and vesicles in mycorrhizal roots of yellow poplar were examined by electron microscopy. An investing layer of host wall material and cytoplasm enclosed the endophyte within the cells. Young developing hyphae contained abundant cytoplasm and few vacuoles. As hyphae matured, they became highly vacuolated and accumulated carbohydrate (glycogen) and lipid reserves. Mature vesicles were engorged with lipid droplets, possessed a trilaminate wall and were also enclosed by host wall material and cytoplasm. Compared with uninfected cells, infected cortical cells showed an increase in cytoplasmic volume, enlarged nuclei, and a reduction of starch reserves. Host nuclei were always proximal to the hyphae during hyphal development and deterioration. While other cytoplasmic components of infected and uninfected cells were comparable large electron-dense bodies occurred in vacuoles of most cells containing hyphae. Deterioration of intracellular hyphae occurred throughout the samples examined. Septa separated functional and degenerating portions of the hyphae. Hyphal deterioration involved degeneration and ultimate disappearance of fungal cytoplasm as well as collapse of hyphal walls. Based on these observations, the authors hypothesize that deterioration of the endophyte may release significant quantities of mineral nutrients, via hyphal contents, which are absorbed by the host.  相似文献   

4.
Electron microscopy of the endophyte ofAlnus glutinosa   总被引:1,自引:0,他引:1  
Earlier light microscopic investigations have revealed that the endophyte ofAlnus glutinosa presents itself in three different forms. In the present study this is confirmed by electron microscopy; also, new data on the cytology of the endophyte have been obtained.The host cells are primarily infected by the hyphal form of the endophyte. A plant cell nucleus and mitochondria can be found in the infected host cells.In the majority of the infected cells, so-called vesicles develop at the tips of the hyphae. Electron micrographs show that these vesicles, as well as the hyphae, are surrounded by the host-cell cytoplasmic membrane. The endophyte cytoplasm inside the vesicles is divided in all directions by cross walls, many of which are incomplete. Plasmalemmosomes are conspicuous. Some vesicles look vigorous but others shrunken or nearly devoid of cytoplasm as if being digested.A minority of host cells situated between the vesicle-containing ones are completely filled by bacteria-like cells. These host cells, in contrast to the other ones, do not contain a nucleus nor mitochondria, nor are the endophyte cells in them enveloped by a host cell cytoplasmic membrane: these host cells are dead. Vesicles are not found in these cells.It is inferred that a living host cell exerts a stimulus on the endophyte to which the latter responds by forming vesicles at the tips of the hyphae. At a later stage the host cells digest the vesicles and the hyphae. On the other hand, if a host cell does not survive the infection, the hyphae divide into bacteria-like cells, which are not digested owing to the absence of host cytoplasm.According to the cytology of the hyphae, the endophyte is an actinomycete.The cytology of the endophyte needs further elucidation. Its plasmalemmosomes, or membranous bodies connected with the cytoplasmic membrane, are beautifully developed. The striated bodies described on p. 359 under 4) may be a new feature, which may turn up in other actinomycetes or bacteria.  相似文献   

5.
A cytochemical study has been made to examine the activity of acid β-glycerophosphatase in the mycorrhizal cells of the seedling of Gastrodia elata BI. using thin sectioning technique in which sections were embedded in glycol mathacrylate (GMA). After the seedling was invaded by the hyphae of Mycena osmundicola Lange, two different kinds of infected cells were formed in its root cortex.the outer 1–2 cell layers namely the hyphae-containing cells (or host cells) contained many coiled hyphae pelotons; the inner comparativly large cell layer or fungus-digesting cells contained a few straight hyphae. Localization of acid phosphatase in hyphae-containing cells showed that only a few senescent hyphae retained the enzyme activity and the plant cells did not release hydrolytic enzyme. So it is considered that the hyphal lysis in hyphae-containing cell may be due to autolysis. In contrast, higher acid phosphatase activity was visualized in many vesicles and small vacuoles of the fungus-digesting cells. When a hypha entered a fungus-digesting cell through a hyphae-containing cell, a number of enzyme granules (i. e, enzymecontaining vesicles) gathered around it. Later on the enzyme granules expanded gradually and became small enzyme vacuoles of 1.6–2.0 μm in diameter. Still later the small enzyme vacuoles fused with each other to form a large vacuole in which a part of an invading hypha was enclosed and gradually digested by hydrolytic enzymes. Finally,the digesting vacuole changed into a residual body containing some metabolic waste. The above results suggest that fungus-digesting cells can actively release hydrolytic enzymes by lysosomal vesicles to digest the invading hyphae, but such function is not present in the hyphae-containing cells,the role of which may be attributed to attracting and controling the invading hyphae.  相似文献   

6.
被蜜环菌(Armillaria mellea)侵染的天麻(Gastrodia elata B1.)皮层中,由外至内形成三种类型的染菌细胞:菌丝结细胞、空腔细胞和消化细胞。外部两类细胞中的酸性磷酸酶定位显示,一些位于空腔细胞或衰老的菌丝结细胞中的菌丝内部逐渐产生大量酸性磷酸酶,随后菌丝发生自溶。这两类细胞中未发现明显的释放水解酶消化菌丝的现象。当菌丝进入消化细胞以后,情况与此不同,大量包含酸性磷酸酶的微小颗粒出现在菌丝周围,随后这些酶颗粒相互融合,形成包围菌丝的消化泡,菌丝被溶酶体水解酶所消化。最后消化泡变为包含代谢废物的残体。  相似文献   

7.
Summary The concept and nomenclature for the elements of teliospore walls in smut fungi are presented and a survey of teliosporogenesis is given, as seen by light and transmission electron microscopy. Four developmental types are distinguished: the Ustilago, Microbotryum, Tilletia, and Entorrhiza type. In the Ustilago type, sporogenous hyphae are completely segmented into teliospore initials which are embedded in a hyaline matrix formed by gelatinised hyphal walls (found in species ofAnthracoidea, Cintractia, Heterotolyposporium, Kuntzeomyces, Macalpinomyces, Melanopsichium, Sporisorium, Testicularia, Tolyposporium junci, Trichocintractia, and species ofUstilago infecting members of the family Poaceae). In the Microbotryum type, septate sporogenous hyphae are also completely segmented into teliospore initials, however, they are not surrounded by a hyaline matrix (Microbotryum, Sphacelotheca, Ustilago spp. infecting dicotyledons). A yeast-like budding of teliosporogenic cells is observed for some species ofMicrobotryum, Sphacelotheca, andUstilago infecting dicotyledons. In the Tilletia type, teliospores differentiate locally in the sporogenous hyphae, in an apical or intercalary position, without a hyaline matrix (Conidiosporomyces, Doassinga, Entyloma, Erratomyces, Ingoldiomyces, Neovossia, Oberwinkleria, Rhamphospora, Tilletia). In all these types, the teliospore initials first develop a hyaline sheath under which the ornamentation, the exosporium, sometimes a middle layer, and the endosporium are successively deposited by the fungal cell. In the Entorrhiza type, the teliospores develop inside vital host cells with the wall of the sporogenous hypha included into the teliospore wall. The fungus develops a middle layer and an electron-transparent endosporium inside the hyphal wall while a layer forming the ornamentation is deposited onto the hyphal wall, probably by vesicles of dictyosomes of the host cell.Part 164 in the series Studies in Heterobasidiomycetes from the Botanical Institute, University of Tübingen  相似文献   

8.
S. IMHOF 《The New phytologist》1999,144(3):533-540
Afrothismia winkleri develops fleshy rhizomes, densely covered with small root tubercles, narrowing to filiform roots with age. The exclusively intracellular mycorrhizal fungus has distinct morphologies in different tissues of the plant. In the filiform root the hyphae grow straight and vesicles are borne on short hyphal stalks. The straight hyphae are present in the epidermis of the root tubercles, but change to loosely coiled and swollen hyphae in the rhizome tissue. No penetration from epidermis to root cortex was found. From the rhizome, a separating cell layer permits only one or rarely two hyphal penetrations into the cortex of each root tubercle. The hyphae proceed apically within the root hypodermis in a spiral row of distinctively coiled hyphae, branches of which colonize the inner root cortex. In the inner root cortex the hyphal coils degenerate to amorphous clumps. In older roots the cortex itself also deteriorates, but epidermis, hypodermis, endodermis and central cylinder persist. The mycorrhizal pattern in A. winkleri is interpreted as an elaborate exploitation system whereby the fungus provides carbon and nutrients to the plant and, simultaneously but spatially distinct, its hyphae are used to translocate and store the matter within the plant. Several features indicate that the endophyte is an arbuscular mycorrhizal fungus.  相似文献   

9.
Chien CY 《Cytobios》2000,103(403):71-78
A mycoparasite identified as Thamnocephalis quadrupedata (Mucorales) was observed on cultures of the frog dung fungus, Basidiobolus ranarum. The parasitic fungus, T. quadrupedata possessed infection hyphae with appressoria and penetrating hyphae to attack their host prey and adhere firmly to the surface. The invasion was often by slender infection hyphae or infecting pegs which grew from the appressoria and penetrated the chitin-protein cuticle by both mechanical pressure and exocellular enzymes. The host fungus, B. ranarum, possessing primary conidia, capilliconidia, hyphal bodies, vegetative mycelia and zygospores, were infected by means of direct penetration and intrahyphal growth, resulting in host cell death. T. quadrupedata may also grow as a saprophyte on damp filter paper in a Petri dish, manifesting facultative necrosis.  相似文献   

10.
Chinese cabbage roots colonized by the dematiaceous fungal taxon Heteroconium chaetospira were previously found to become highly resistant to clubroot and Verticillium yellows. The dematiaceous fungus possesses an endophytic nature, but no detailed anatomical studies on endophyte–host plant interactions have so far been provided. Light and electron microscopy revealed that hyphae of H. chaetospira were abundant on and inside the root epidermal cells by 3 weeks following inoculation. The penetration pegs easily breached into epidermal cells, and the infection hyphae penetrated into cortical cells. Some appressorium-like swollen structures formed from intracellular hyphae, but no visible degradation of the host cell walls was evident where the hyphae contacted. No visible signs of host reactions and no invagination of the host plasma membrane around the hyphae were seen in the host cells. By 8 weeks following inoculation, masses of closely packed fungal cells had been formed in some cells of the epidermis and cortical layers, but further hyphal ingress was halted, mostly in the inner cortical cell layer. Thus, root vascular cylinders remained intact.  相似文献   

11.
The endophyte, that is, the haustorial part within the tissues of the host plant Impatiens balsamina, of the parasitic angiosperm Cuscuta japonica was studied with light and electron microscopy. The endophyte consisted mainly of vacuolated parenchymatous axial cells and elongate, superficial (epidermal) cells. Then the elongate, epidermal cells separated from each other and transformed into filamentous cells, called searching hyphae. The hyphae grew independently either intercellularly or intracellularly in the host parenchyma. The apical end of the hyphal cells was characterized by conspicuous, large nuclei with enlarged nucleoli and very dense cytoplasm with abundant organelles, suggesting that the hyphal cells penetrating host tissue were metabolically very active. Numerous osmiophilic particles and chloroplasts were noted in the hyphae. The osmiophilic particles were assumed to be associated with elongation of the growing hyphe. Plasmodemata connections between the searching hyphal cells of the parasite and the host parenchyma cells were not detected. Hyphal cells that reached the host xylem differentiated into water-conducting xylic hyphae by thickening of the secondary walls. A xylem bridge connecting the parasite and the host was confirmed from serial sections. Some hyphal cells that reached the host phloem differentiated into nutrient-conducting phloic hyphae. Phloic hyphae had a thin layer of peripheral cytoplasm with typical features of sieve-tube members in autotrophic angiosperms, i.e., parallel arrays of smooth endoplasmic reticulum, mitochondria, and plastids with starch granules. Interspecific open connections via the sieve pores of the host sieve elements and plasmodesmata of the parasite phloic hyphae were very rarely observed, indicating that the symplastic translocation of assimilate to the parasite from the host occurred.  相似文献   

12.
Evidence, based on ultrastructural observations of stages involved in root infection oi Nicotiana tabacum cv. Xanthi n.c. in vitro by the black root rot fungus Chalara elegans, indicates that host cells from various layers react differently when challenged by the pathogenic fungus. All the host responses observed were associated with host cell wall modifications. Host reaction to fungal invasion occurring in the epidermal cells was limited to a disorganization of the cytoplasm. In the hypodermal cell layer, fibrillar cell wall outgrowths and wall thickenings were the earliest and the most obvious host reactions. In parenchymal cells, the host reacted by depositing papilla-like wall appositions directly adjacent to the infecting hyphae; with secondary infection of these cells, a densely staining material was laid down, mainly around the distal region of the infecting hyphae. In all these tissues, infection also led to disorganization of the host cytoplasm. Colonization of the endodermis did not lead to any rapid lethal modifications in either the host or the fungus, and a biotrophic-like state seemed to occur at this stage of the infection. No hyphal infection occurred in the central cylinder.  相似文献   

13.
 This paper reports the changes that occur in the microtubule cytoskeleton of cells of orchid protocorms during infection by a compatible mycorrhizal fungus. In cells of protocorms uninfected by a mycorrhizal fungus, microtubules occurred in regular arrays. In contrast, the cells of orchid protocorms with established mycorrhizas appeared to contain irregularly arranged microtubules. Double labelling with anti-β-tubulin and rhodamine-labelled wheat-germ agglutinin demonstrated that these irregularly arranged microtubules occurred only inside fungal hyphae and that microtubules were absent from host cells containing mycorrhizal fungi. Microtubule depolymerisation was shown to occur at the early stages of fungal infection. There was neither loss of nor obvious organisational change in microtubules in cells adjacent to others containing fungal hyphae. Electron microscopy confirmed the presence of an interfacial matrix between the host plasma membrane and the hyphal wall. The loss of microtubules from cells infected by mycorrhizal fungi suggests that an intact host microtubule cytoskeleton is not necessary for the formation of the interfacial matrix in mycorrhizas of orchid protocorms. Accepted: 9 November 1995  相似文献   

14.
The organization of the Hartig net in the mature state was studied in mycorrhizas of Amanita muscaria (Pers. ex. Fries) Hook. Picea abies (L.) Karst. grown in vitro. The tips of the fan-like branched hyphae contain dense cytoplasm with a large number of mitochondria and rER frequently stretched in the direction of the hyphal growth, indicating that active transfer of solutes between host and fungus is localized here. Lack of septation of the hyphae and their intimate juxtaposition, leaving no space in between, result in a coenocytic, transfer cell-like structure of the Hartig net. The multinucleate status of the cells is shown. The advantage of this organization for nutrient exchange between host and fungus and for nutrient transport within the hyphal system is discussed.  相似文献   

15.
A fundamental hallmark of fungal growth is that vegetative hyphae grow exclusively by extension at the hyphal tip. However, this model of apical growth is incompatible with endophyte colonization of grasses by the symbiotic Neotyphodium and Epichlo? species. These fungi are transmitted through host seed, and colonize aerial tissues that develop from infected shoot apical meristems of the seedling and tillers. We present evidence that vegetative hyphae of Neotyphodium and Epichlo? species infect grass leaves via a novel mechanism of growth, intercalary division and extension. Hyphae are attached to enlarging host cells, and cumulative growth along the length of the filament enables the fungus to extend at the same rate as the host. This is the first evidence of intercalary growth in fungi and directly challenges the centuries-old model that fungi grow exclusively at hyphal tips. A new model describing the colonization of grasses by clavicipitaceous endophytes is described.  相似文献   

16.
A fundamental hallmark of fungal growth is that vegetative hyphae grow exclusively by extension at the hyphal tip. However, this model of apical growth is incompatible with endophyte colonization of grasses by the symbiotic Neotyphodium and Epichlo? species. These fungi are transmitted through host seed, and colonize aerial tissues that develop from infected shoot apical meristems of the seedling and tillers. We present evidence that vegetative hyphae of Neotyphodium and Epichlo? species infect grass leaves via a novel mechanism of growth, intercalary division and extension. Hyphae are attached to enlarging host cells, and cumulative growth along the length of the filament enables the fungus to extend at the same rate as the host. This is the first evidence of intercalary growth in fungi and directly challenges the centuries-old model that fungi grow exclusively at hyphal tips. A new model describing the colonization of grasses by clavicipitaceous endophytes is described.  相似文献   

17.
Summary Electron microscopy of protocorms of Dactylorhiza purpurella infected with a symbiotic Rhizoctonia sp. showed that the intracellular hyphae examined did not penetrate the plasmalemma of the host cell. Walls of hyphae within cells bore many hemispherical protuberances over which the host plasmalemma was closely pressed. we estimate that these protuberances would increase the area of contact between hyphae and host plasmalemma by about 15%. They were not found on hyphae growing on agar. Except for these protuberances, and some vesicles or tubules which invaginated the fungus plasmalemma, no other structures were seen which could be suggested to be adaptations to transport across the living fungus-host interface.  相似文献   

18.
R. H. Berg  L. McDowell 《Protoplasma》1987,136(2-3):104-117
Summary This is an ultrastructural study of development of infected cells in nitrogen fixing root nodules ofCasuarina spp. While several aspects of development are similar to those found in many other actinorhizae, unusual aspects of development of the host cell and differentiation of the endophyte inCasuarina are correlated with unusual changes in the wall of the infected cell. Instead of vesicles the endophyte forms atypical hyphae in mature infected cells. These unusual hyphal forms are termed intracellular hyphae. Intracellular hyphae are nonseptate hyphae which originate and terminate within the same host cell, and have a varying diameter and a multidirectional growth and branching pattern. A laminate surface layer previously undescribed on hyphae ofFrankia is a feature common to mostCasuarina endophytic hyphae and is probably similar chemically to the laminae comprising the multilamellate envelope of endophytic vesicles in other actinorhizae.This paper is Florida Agricultural Experiment Station Journal Series No. 7350.  相似文献   

19.
Plants of Dictyostega orobanchoides arise from about 1 mm thick rhizomes, which are densely covered by sessile, imbricate, peltate scale leaves. The resulting interfoliar spaces are inhabited by fungal hyphae up to 6 microns thick, often developing vesicle-like bladders. The fungus also colonizes the tissue of the scale leaves, inter- as well as intracellularly, forming vesicles but no arbuscules, and it even penetrates the vascular bundles of the leaves. The rhizome itself does not become infected. The 200 microns thick roots emerge from the rhizome and have a 2-layered cortex and voluminous rhizodermis, which both are delicate and often disrupted or missing. In contrast, the strongly reinforced, tertiary endodermis and the central cylinder are durable and have a considerable tensile strength. Although the roots grow through the hyphal masses in the interfoliar spaces when emerging from the rhizome, they only become infected from the rhizosphere. A collar of rhizomogenous tissue hinders the interfoliar hyphae from direct contact to the roots. Only within the rhizodermis, the mycorrhizal fungus builds coils of heteromorphic hyphae, arbuscule-like structures, and vesicles. Hence, the mycorrhiza in D. orobanchoides is assigned to the arbuscular mycorrhiza. It is hypothezised, that the ephemeral mycorrhizal tissue combined with the durable vascular system of the roots is a strategy to avoid the high costs of protecting the large rhizodermal surface area. The rhizomogenous collar is explained as an extra protection to the tender, young roots, when emerging from the rhizome. The necessity to include other subterranean plant organs along with the roots in future mycorrhizal studies is emphasized.  相似文献   

20.
Hygrophorus olivaceoalbus has long been known as an ectomycorrhizal fungus, formerly designated with the artificial binomen Piceirhiza gelatinosa. Recently, it has been found to be abundant and very frequent under double ambient ozone free air fumigation of mature Norway spruce trees. As it has already been reported that this fungus can form intercellular hyphae within the root meristem, a more detailed study was performed to clarify its type of root colonization. The present study not only revealed intercellular hyphae within the meristematic zone but also intracellular hyphae within root cortex cells which grow towards and into large tannin droplets—phenolic compounds usually deposited as defensive aids—to finally fill them completely. The hyphal assemblages become globular which at first sit as separated hyphal balls within cells still containing cytoplasm. Later on, they are apparently released from the root cells, presumably as microsclerotia for dispersal of the species. Old ectomycorrhizae (ECM) show an apical pore, and later a large orifice of a tube-like cylinder formed by the thick, persistent hyphal mantle. The root tissue is progressively degrading towards proximal parts. Disintegrating root cells apparently liberate the microsclerotia through the orifice. Further studies have to find out the mechanism by which the microsclerotia are liberated and whether they operate as asexual propagules and lastly how and by whom they are propagated. As these ECM are found under ozone stress, and with identical features at higher altitudes, stress impact on trees might be the causative agent for the high frequency and abundance of Hygrophorus olivaceoalbus ECM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号