首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
紫花苜蓿对CO2倍增的反应:生态生理研究和模型拟合   总被引:17,自引:0,他引:17  
研究了紫花苜蓿(Medicago sativa)在CO2 倍增下光合作用、蒸腾作用、气孔导度、水分利用效率的生态生理变化,并在此基础上对苜蓿进行了生态生理模型化的研究。在倍增(700 μm ol·m ol- 1)和对照(350 μm ol·m ol- 1) CO2 浓度下,对紫花苜蓿的生态生理学的研究表明,光合作用有效辐射是影响瞬时表观光合速率的主要环境因子,而气孔导度主要受相对湿度的限制。以整个生育期计,倍增组的表观光合作用比对照组可提高18.7% ,气孔导度略有下降(2% ),蒸腾作用减少了2.7% ,水分利用效率提高了30.1% 。还对生理指标的实测数据进行了模型化的研究。对光合作用模型和气孔导度模型中参数的拟合结果表明,CO2 倍增条件下,紫花苜蓿的光能转化效率(α)、电子传递速率(Jm ax)比对照组都有明显的提高,最大气孔开度略有下降  相似文献   

2.
    
Wang J L  Yu G R  Fang Q X  Jiang D F  Qi H  Wang Q F 《农业工程》2008,28(2):525-533
Photosynthesis coupled with transpiration determines water use efficiency (WUE) at leaf level, and the responses of WUE controlled by gas exchanges through stomata to environment are the basis of carbon and water cycles in the ecosystem. In this paper, by using Li-6400 Portable Photosynthesis System (LI-COR), WUE at leaf level was analyzed under controlled photosynthetic photons flux density (PPFD) and CO2 concentration conditions across 9 plant species including maize (Zea mays), sorghum (Sorghum vulgare), millet (Setaria italica), soybean (Glycine max), peanut (Arachis phyogaea), sweet potato (Ipomoea batatas), rice (Oryza sativa), Masson pine (Pinus massoniana) and Schima superba. We had developed a new model to estimate the water use efficiency in response to the combined effects of light and CO2 concentration. Our measured data validated that this model could simulate the changes of water use efficiency very well under combined effect of light and CO2 concentration. It could be used to estimate contribution of photosynthesis increase and transpiration decline on water use efficiency with the rising of CO2 concentration. Great differences in water use efficiency occurred in these different plant species under various CO2 concentration levels. Based on water use efficiency at regional scale, we concluded that plants should be separated into C3 plants and C4 plants, and furthermore, C3 plants should be separated into herbaceous plants and woody plants. Our separation criteria would do a great favor in modeling the evapotranspiration of terrestrial ecosystem with carbon and water balance.  相似文献   

3.
不同植物叶片水分利用效率对光和CO2的响应与模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础.研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究.提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型.数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应.该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量.CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率.应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据.  相似文献   

4.
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础。研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究。提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型。数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应。该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量。CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率。应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据。  相似文献   

5.
不同风沙条件对几种植物生态生理特征的影响   总被引:16,自引:1,他引:16       下载免费PDF全文
 在野外风洞条件下,就不同风况的风沙胁迫对几种固沙植物生态生理特征的影响进行了实验研究。实验采用了沙坡头地区的野外植物和盆栽植物。在不同风速(5.9 m·s-1, 7.9 m·s-1, 9.9 m·s-1,14 m·s-1, 10 m·s-1,15 m·s-1, 20 m·s-1)和吹袭时间间隔(2 d, 4 d, 9 d)下测定了植物3个生理生态参数的变化。实验结果表明:1)净风和风沙流胁迫均可使植物的净光合速率(Pn)降低,蒸腾速率(E)升高,从而导致水分利用效率(WUE)下降。净风和风沙流对植物生理生态特征的影响显著不同。同样为14 m·s-1的风速时,风沙流使植物的Pn降低40.7%,而净风使其降低了35.88%。2)吹袭的时间间隔越短,植物的净光合速率降幅越大;风沙流比净风的影响更大。在2 d, 4 d, 9 d为间隔的风沙流吹袭下,油蒿(Artemisia ordosica)的Pn分别下降了20.13%、 11.76%、 7.72%。风沙胁迫强度越大,物质积累越少,植物的高生长越慢。3)由于风沙流降低了水分利用率,从而增加了对植物的干燥作用。从总体来看,沙生植物对风沙流胁迫有一定的适应响应,实验所用灌木较草本植物有更强的抗风性。  相似文献   

6.
CO2浓度倍增对谷子和紫花苜蓿叶绿体超微结构的效应   总被引:14,自引:0,他引:14  
电镜观察结果表明,不同种类植物生长在相同倍增的高CO2 浓度条件下,其叶绿体超微结构彼此呈现出明显的差异. 最醒目的特征是淀粉粒的积累比对照的增加很多;类囊体膜系发生异变. 总体上,(1)淀粉粒,C4 植物谷子(Setaria italica)叶绿体比C3 植物紫花苜蓿(Medicago sativa)积累的更多. (2)淀粉粒较小且较少时,紫花苜蓿叶绿体基粒类囊体膜增多,与基质类囊体膜相间排列有序;谷子叶绿体的基粒垛及基粒类囊体膜数均增多,但基粒变小,基质类囊体膜变长,且有些膜出现膨胀甚至破损. (3)淀粉粒较大且积累过多时,紫花苜蓿叶绿体中尚可隐约见到由4~8 个类囊体膜组成的短小基粒零星分布于淀粉粒间;谷子叶绿体中几乎找不到可辨认的基粒和基质类囊体膜  相似文献   

7.
本文对辽西地区主要作物田间水平衡分量进行了估算。系统研究了4种处理对水平衡方程各分量及水分调控效果的影响。分析了不同处理的作物生长、产量反应及水分利用效率。结果表明秋翻冬灌处理的储水能力分别高于秋翻不灌、秋翻春灌及深松冬灌3个处理。秋翻冬灌可使1m褐土土体增加有效储水约100mm,占该土体总有效水的2/3,使该区主要作物足以抗御春旱和夏旱,并明显提高水分利用效率。秋翻冬灌且每隔2—3年深松1次为最好的组合措施。  相似文献   

8.
贵州葡萄属野生种光合特性的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为掌握野生葡萄种间和种内不同单株间的光合特性差异,利用Li-6400便携式光合测定系统测定了7种野生葡萄25个单株的光合参数.结果表明:野生葡萄种间光合特性差异明显,美丽葡萄净光合速率最高,其次是刺葡萄,腺枝葡萄的净光合速率最低.野生葡萄种内不同单株间的光合指标多样性丰富,单株间光合特性差异最大的是葛藟葡萄;种内不同单株间原产地气候条件相似,其光合特性差异较小,而原产地气候差异大的单株光合特性差异也大;野生葡萄的光合速率调控机制多样,非气孔因素调控在野生葡萄种群内非常普遍.  相似文献   

9.
    
Drought is frequently recorded as a result of climate warming and elevated concentration of greenhouse gases, which affect the carbon and water cycles in terrestrial ecosystems, particularly in arid and semi-arid regions. To identify the drought in grassland ecosystems and to determine how such drought affects grassland ecosystems in terms of carbon and water cycles across the globe, this study evaluated the drought conditions of global grassland ecosystems from 2000 to 2011 on the basis of the remotely sensed Drought Severity Index (DSI) data. The temporal dynamics of grassland carbon use efficiency (CUE) and water use efficiency (WUE), as well as their correlations with DSI, were also investigated at the global scale. Results showed that 57.04% of grassland ecosystems experienced a dry trend over this period. In general, most grassland ecosystems in the northern hemisphere (N.H.) were in near normal condition, whereas those in the southern hemisphere (S.H.) experienced a clear drying and wetting trend, with the year 2005 regarded as the turning point. Grassland CUE increased continually despite the varied drought conditions over this period. By contrast, WUE increased in the closed shrublands and woody savannas but decreased in all the other grassland types. The drought conditions affected the carbon and water use mainly by influencing the primary production and evapotranspiration of grass through photosynthesis and transpiration process. The CUE and WUE of savannas was most sensitive to droughts among all the grassland types. The areas of grassland DSI that showed significant correlations with CUE and WUE were 52.92% and 22.11% of the total grassland areas, respectively. Overall, droughts sufficiently explained the dynamics of grassland CUE, especially in the S.H. In comparison with grassland CUE, the grassland WUE was less sensitive to drought conditions at the global scale.  相似文献   

10.
Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation.  相似文献   

11.
    
It has been reported in quite a number of literatures that doubled CO2 concentration increased the photosynthetic rate and dry matter production of C3 plants, but substantially affected C4 plants little. However, why may CO2 enrichment promote growth and either no change or decrease reproductive allocation of the C3 species, but havinag no effects on growth characteristics of the C4 plants? So far, there has been no satisfactory explanation on that mentioned above, except the differences in their CO2 compensatory points. In the past, although some studies on ultrastructure of the chloroplasts under doubled CO2 concentration were limitedly conducted. Almost all the relevant experimental materials were only from C3 plants not from C4 plants, and even though the results were of inconsistancy. Thereby, it needs to verify whether the differences in photosynthesis of C3 and C4 plants at doubled CO2 level is caused by the difference in their chloroplast deterioration. Experiments to this subject were conducted at the Botanical Garden of Institute of Botany, Academia Sinica in 1993 and 1994. Both experimental materials from C3 plant alfalfa (Medicago sativa) and C4 plant foxtail millet (Setaria italica) were cultivated in the cylindrical open-top chambers (2.2 m in diameter × 2.4 m in height) with aluminum frames covered by polyethylene film. Natural air or air with 350× 10-6 CO2 were blown from the bottom of the chamber space with constant temperature between inside and outside of the chamber 〈0.2℃〉. Electron microscopic observation revealed that the ultrastructure of the chloroplasts from C3 plant Medicago sativa and C4 plant Seteria italica growing under the same doubled CO2 concentration were quite different from each other. The differential characteristics in ultrastructure of chloro plasts displayed mainly in the configuration of thylakoid membrances and the accumulation of starch grains. They were as follows: 1. The most striking feature was the building up of starch grains in the chloroplasts of the bundle sheath cells (BSCs) and the mesophyll cells (MCs) at doubled CO2 concentra tion. The starch grains appeared centrifugally first in the BSCs and then in the chloroplast of the other MCs. It was worthy to note that the starch grains in the chloroplasts of C4 plant Setaria ira/ica were much more than those of the C3 plant Medicago sativa . The decline of photosynthesis in the doubled CO2-grown C4 plants might be caused by an over accumulation of starch grains, that deformed the chloroplast even demaged the stroma thylakoids and grana. There might exsist a correlation between the comformation of thylakoid system and starch grain accumulation, namely conversion and transfer of starch need energy from ATP, and coupling factor (CF) for ATP formation distributed mainly on protoplastic surface (PSu) of stroma thylakoid membranes, as well as end and margin membranes of grana thylakoids. Thereby, these results could provide a conclusive evidence for the reason of non effectiveness on growth characteristics of C4 plant. 2. Under normal condition , the mature chlolroplats of higher plants usually develop complete and regularly arranged photosynthetic membrane systems . Chloroplasts from the C4 plant Setaria italica, however, exerted significant changes on stacking degree, grana width and stroma thylakoid length under doubled CO2 concentration; In these changes, the grana stacks were smaller and more numerous, and the number of thylakoids per granum was greatly increased, and the stroma thylakoid was greatly lengthened as compared to those of the control chloroplasts. But the grana were mutually intertwined by stroma thylakoid. The integrity of some of the grana were damaged due to the augmentation of the intrathylakoid space . Similarly, the stroma thylakoids were also expanded. In case. the plant was seriously effected by doubled CO2 concentration as observed in C4 plant Setaria italica , its chloroplasts contained merely the stroma (matrix) with abundant starch grains, while grana and stroma thylakoid membranes were unrecognizable, or occasionally a few residuous pieces of thylakoid membranes could be visualized, leaving a situation which appeared likely to be chloroplast deterioration. However, under the same condition the C3 plant Medicago sativa possessed normally developed chloroplasts, with intact grana and stroma thylakoid membranes. Its chloroplasts contained grana intertwined with stroma thylakoid membranes, and increased in stacking degree and granum width, in spite of more accumulated starch grains within the chloroplasts. These configuration changes of the thylakoid system were in consistant with the results of the authors another study on chloroplast function, viz. the increased capacity of chloroplasts for light absorption and efficiency of PSⅡ.  相似文献   

12.
Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation.  相似文献   

13.
土壤水分对返青期断根冬小麦补偿效应的影响   总被引:1,自引:1,他引:1  
通过盆栽试验研究了不同土壤水分条件下返青期断根冬小麦的补偿效应.结果表明,断根小麦的早期生长受到抑制,叶面积在返青 拔节期间显著下降,到开花期能恢复至对照水平.高水分条件下断根小麦拔节期的叶绿素荧光参数包括表观光合电子传递速率、实际光化量子产量、光化学淬灭系数、非光化学淬灭值均显著大于对照,开花后单茎干物质积累为0.81 g,显著大于对照(0.56 g),花后干物质积累系数比对照提高了38.79%,断根小麦根量虽有所下降但差异不显著;低水分条件下断根小麦的叶绿素荧光参数和花后干物质积累与对照之间没有显著差异,但断根小麦的根系生物量(7.83 g·pot-1)显著小于对照(9.77 g·pot-1).土壤水分对断根小麦的地上生物量和籽粒产量的补偿效应没有显著影响.断根处理的冬小麦在两种土壤水分条件下均显著降低了耗水量,在整个生育期,高水分条件下冬小麦断根处理可节水2 000 ml左右,水分利用效率为1.97 g·kg -1,显著大于对照的1.70 g·kg -1;低水分条件下也可节水1 500 ml左右,水分利用效率虽有所提高,但未达到显著性差异.  相似文献   

14.
Serving as an important second messenger, calcium ion has unique properties and universal ability to transmit diverse signals that trigger primary physiological actions in cells in response to hormones, pathogens, light, gravity, and stress factors. Being a second messenger of paramount significance, calcium is required at almost all stages of plant growth and development, playing a fundamental role in regulating polar growth of cells and tissues and participating in plant adaptation to various stress factors. Many researches showed that calcium signals decoding elements are involved in ABA-induced stomatal closure and plant adaptation to drought, cold, salt and other abiotic stresses. Calcium channel proteins like AtTPC1 and TaTPC1 can regulate stomatal closure. Recently some new studies show that Ca2+ is dissolved in water in the apoplast and transported primarily from root to shoot through the transpiration stream. The oscillating amplitudes of [Ca2+]o and [Ca2+]i are controlled by soil Ca2+ concentrations and transpiration rates. Because leaf water use efficiency (WUE) is determined by stomatal closure and transpiration rate, so there may be a close relationship between Ca2+ transporters and stomatal closure as well as WUE, which needs to be studied. The selection of varieties with better drought resistance and high WUE plays an increasing role in bio-watersaving in arid and semi-arid areas on the globe. The current paper reviews the relationship between calcium signals decoding elements and plant drought resistance as well as other abiotic stresses for further study.  相似文献   

15.
伤根对玉米光合作用和水分利用效率的影响   总被引:12,自引:2,他引:12  
1 引  言在世界范围内 ,水资源的短缺日益受到人们的关注 ,农业水资源的高效利用已是世界农业亟待解决的主要问题 .因此 ,现代农业不应再单纯满足于高产 ,还应着眼于节约资源 ,提高水资源利用效率 .近年来 ,为了提高产量及水分利用效率 ,农业科技工作者在植物 水分方面做了大量的工作[1~ 3 ,5~ 7,9~ 12 ] .在人类的农业生产实践中 ,水稻插秧、幼苗移栽以及对作物的中耕等都可以使植株生长状况好转 ,作物产量提高 ,而这些措施都会对植物根系产生一定的影响 .对作物根系进行人为的伤害 ,也可能会改善作物生长状况 ,调节作物对有限土壤水…  相似文献   

16.
夏玉米苗期有限水分胁迫拔节期复水的补偿效应   总被引:18,自引:0,他引:18  
以作物调亏灌溉原理为基础 ,对夏玉米苗期水分胁迫拔节期复水进行了试验研究。结果表明 ,复水增加了夏玉米叶片气孔导度和光合速率 ,提高叶片水平上的水分利用效率(WUE)。复水 2天后 ,叶片气孔导度和光合速率即恢复到对照水平 ,部分时段 ,特别在下午 ,复水处理表现出高于对照的“反冲”现象。复水使苗期受旱的夏玉米株高、叶面积、地上 (下 )部分干物重和根系生长发育都恢复到或接近充分供水的植株生长水平。使其产量及构成因子与对照接近 ,水分利用效率显著地提高了 2 4 7%。这为玉米中后期的水分管理 ,提高玉米水分利用效率 ,提供了一定的理论依据 ;也提供了一种便于广大农民掌握的简单易行的灌溉方式  相似文献   

17.
王珊珊  陈曦  王权  包安明  曹晓明  李平衡 《生态学报》2011,31(11):3082-3089
光合作用和水分利用是陆地生态系统中限制植物光合同化和个体生长发育的重要因素。为了从根本上认识到荒漠绿洲过渡带植物对特殊生境和气候变化的响应和适应机制,有必要深入的了解植被对不同环境因子适应过程的协调性。本文以新疆古尔班通古特沙漠南缘荒漠绿洲过渡带的建群种多枝柽柳(Tamarix ramosissima)为研究对象,分别在自然状态,模拟降水、遮光处理以及降水和遮光双因子处理下,利用LI-6400光合作用系统和Model 3500植物水分压力室分别测定光合作用和枝条水势,研究多枝柽柳枝条水势对浅层土壤水分和光照变化的响应,以及在不同条件下的水分利用效率(WUE)和光能利用效率(LUE)的日进程。结果表明:这四种处理方式下,枝条水势随土壤水分的变化没有明显的差异,趋势表现为黎明前枝条水势最高(-1.2 MPa),正午枝条水势最低(-3.2 MPa),太阳落山后枝条水势逐渐升高的趋势;WUE和LUE日变化呈现出近似双峰型抛物线,WUE日变化曲线在11:00和16:00有两个不明显的波峰,LUE日变化曲线在10:00和16:00出现两个明显波峰。当光照发生变化时,遮光处理下的WUE和LUE日变化都较自然状态下的日变化低,分别降低了1.5 ?mol CO2?mmol-1 H2O的WUE和0.20*10-2 ?mol CO2??mol-1APAR的LUE。研究表明,作为深根系植物的多枝柽柳,生存主要依靠地下水来补给水分,所以浅层土壤水分条件变化没有明显引起光合和蒸腾的响应。而午间光强、高温是构成多枝柽柳光抑制现象的主要原因,这是多枝柽柳长期在荒漠绿洲过渡带形成的对抗环境胁迫的一种表现。  相似文献   

18.
Partial root-zone drying during irrigation (PRD) has been shown effective in enhancing plant water use efficiency (WUE), however, the roles of chemical signals from root and shoot that are involved and the possible interactions affected by nitrogen nutrition are not clear. Pot-grown cotton (Gossypium spp.) seedlings were treated with three levels of N fertilization and PRD. The concentrations of nitrate (NO3), abscisic acid (ABA) and the pH value of leaf and root xylem saps, biomass and WUE were measured. Results showed that PRD plants produced larger biomass and higher WUE than non-PRD plants, with significant changes in leaf xylem ABA, leaf and root xylem NO3 concentrations and pH values, under heterogeneous soil moisture conditions. Simultaneously, high-N treated plants displayed larger changes in leaf xylem ABA and higher root xylem NO3 concentrations, than in the medium- or low-N treated plants. However, the WUE of plants in the low-N treatment was higher than that of those in the high- and medium-N treatments. PRD and nitrogen levels respectively induced signaling responses of ABA/NO3 and pH in leaf or root xylem to affect WUE and biomass under different watering levels, although significant interactions of PRD and nitrogen levels were found when these signal molecules responded to soil drying. We conclude that these signaling chemicals are regulated by interaction of PRD and nitrogen status to regulate stomatal behavior, either directly or indirectly, and thus increase PRD plant WUE under less irrigation.  相似文献   

19.
A pot experiment was conducted to study the effects of root pruning at the stem elongation stage on the growth and water use efficiency (WUE) of winter wheat (Triticum aestivum). The results showed that stomatal conductance (g) and transpiration (E) of wheat were very sensitive to root pruning. After root pruning, they declined rapidly and but returned to pre-pruning values 15 days after treatment. Under well-watered conditions, there was no significant difference in leaf water potential (ψleaf) between root pruned and control plants after root pruning. Under moderate drought stress, ψleaf of root pruned plants declined significantly compared to the control 3 days after root pruning. After 15 days, ψleaf of root pruned plants was similar to the controls. Under different soil moisture levels, net assimilation rate (A) of root pruned plants was lower than controls 3–7 days after root pruning, but was similar to the controls 15 days after pruning. At anthesis (50 days after root pruning), root pruned plants showed significantly higher A compared with the control. Leaf area per tiller and tiller number of root pruning plants was significant lower than the control at booting stage, which showed that root pruning restrained the growth of plants in the early growing stage, but leaf area per stem, of root pruned plants, was similar to the control at anthesis. Under both soil moisture levels, there was no significant difference in grain yield between root pruned and the control plants in the monoculture. In mixture with the control plants, the root pruned plants was less productive and had a lower relative yield (0.92 and 0.78, respectively) compared with the control (1.13 and 1.19, respectively), which suggested that the pruned plants lost some of its competing ability and showed a lower ability to acquire and use the same resources in the mixture compared with the control plant. Over the whole growing cycle, root pruning reduced water consumption (by 10% under well-watered conditions and 16% under moderate drought stress) of wheat significantly compared to the control (< 0.05), and but there was no significant difference in grain yield between root pruned and control plants. Therefore root pruned wheat had a higher WUE with respect to grain yield compared with the controls. In conclusion, lowering water consumption by root pruning in the early growing stage is an effective way to improve water use efficiency in arid and semi arid areas.  相似文献   

20.
稳定性碳同位素技术在生态学研究中的应用   总被引:48,自引:5,他引:48       下载免费PDF全文
 植物光合作用是自然界产生碳同位素分馏的最重要过程,也是碳同位素技术在生态学研究中应用的基础。最初,碳同位素主要应用于光合途径的鉴别。随着技术的不断完善和研究的不断深入,目前此项技术在生态学研究的许多领域都得到了广泛的应用。作者从植物叶片、功能群、群落冠层、生态系统以及全球等几个不同的尺度上,对碳同位素技术在生态学研究中的主要应用进行了简要的总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号