首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在对叶片光合过程机理分析的基础上,结合数学分析方法,建立了模拟美国黑核桃单叶片光合作用的机理模型,该模型包含了叶片光合作用的限速的生化过程和气孔调节因素,对光合作用一气孔导度的耦合模型进行了简化,使之既便于应用,又能较准确地反映田间条件下的情况,并就光合作用对环境因子(太阳辐射、温度及CO2浓度等)变化的响应特征及响应的合理性进行了分析,使用整个生长季实测的叶片生理数据及生态环境数据对所建模型进行了验证,结果表明,模型可以较准确地模拟田间美国黑核桃叶片的光合速率;确定了美国东部黑核桃、北加州黑核桃等两种黑核桃单叶片光合作用与环境因子互作的数量美系。  相似文献   

2.
To model the effect of increasing atmospheric CO2 on semi-arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open-top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 micro mol mol-1 CO2 (elevated CO2) in a semi-arid shortgrass steppe. Assimilation rate (A) and stomatal conductance (gs) at the treatment CO2 concentrations and at a range of intercellular CO2 concentrations and leaf water potentials (psileaf) were measured over 4 years with variable soil water content caused by season and CO2 treatment. Carboxylation efficiency of ribulose bisphosphate carboxylase/oxygenase (Vc,max), and ribulose bisphosphate regeneration capacity (Jmax) were reduced in P. smithii grown in elevated CO2, to the degree that A was similar in elevated and ambient CO2 (when soil moisture was adequate). Photosynthetic capacity was not reduced in B. gracilis under elevated CO2, but A was nearly saturated at ambient CO2. There were no stomatal adaptations independent of photosynthetic acclimation. Although photosynthetic capacity was reduced in P. smithii growing in elevated CO2, reduced gs and transpiration improved soil water content and psileaf in the elevated CO2 chambers, thereby improving A of both species during dry periods. These results suggest that photosynthetic responses of C3 and C4 grasses in this semi-arid ecosystem will be driven primarily by the effect of elevated CO2 on plant and soil water relations.  相似文献   

3.
全球变化条件下植物个体的生理生态学模型   总被引:10,自引:0,他引:10  
天气模型中应用随机模拟方法,产生以天或小时为时间间隔的气温、降水、相对湿度、云量、太阳辐射等天气要素的动态变化时间序列。利用北京地区近30年天气资料进行了模拟验证,模拟结果与实际的天气变化进程相符。生理生态模型描述了净光合速率、气孔传导度、蒸腾速率、水分利用效率的变化机理。结合开顶式CO_2浓度倍增大豆(Glycine max(L.)Merr.)生长实验,分析了这些生理生态特性在全球变化下的动态响应机制,并进行了模拟预测。结果表明:CO_2浓度倍增情况下,净光合速率提高45%,其中光量子效率显著增加,而CO_2传导系数略有下降;气孔传导度、蒸腾速率下降约30%;水分利用效率随CO_2浓度增加几乎呈线性增长,倍增后提高近一倍。  相似文献   

4.
Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 microl l(-1) CO(2). Plant biomass was doubled as a result of growth at high CO(2) and the shoot:root ratio was decreased. Stomatal density was increased in the leaves of the high CO(2)-grown plants, which had greater numbers of smaller stomata and more epidermal cells on the abaxial surface. An asymmetric surface-specific regulation of photosynthesis and stomatal conductance was observed with respect to light orientation. This was not caused by dorso-ventral variations in leaf structure, the distribution of phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) proteins or light absorptance, transmittance or reflectance. Adaxial/abaxial specification in the regulation of photosynthesis results from differential sensitivity of stomatal opening to light orientation and fixed gradients of enzyme activation across the leaf.  相似文献   

5.
Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in increased water use and decreased water use efficiency.  相似文献   

6.
红松幼苗对CO2浓度升高的生理生态反应   总被引:25,自引:8,他引:25  
研究了用开顶箱控制CO  相似文献   

7.
北方粳稻光合速率、气孔导度对光强和CO2浓度的响应   总被引:25,自引:0,他引:25       下载免费PDF全文
 以东北地区主栽的粳稻(Oryza sativa var. japonica)品种为对象,用美国LI-cor公司生产的Li 6400光合作用测定仪控制光强、CO2浓度和温度等环境条件,阐述了光合作用和气孔导度对光和CO2浓度的响应特征及其耦合关系。结果表明,光合速率随光强或CO2浓度的提高而增大,均遵循米氏响应;在不同CO2浓度下,表观量子效率随CO2浓度的提高而增大,但CO2浓度达到800 μmol•mol-1以上时,表观量子效率有所减小;在不同光强下,表观羧化效率也随光的增强而增大,但光强达到1 600 μmol•m-2•s-1以上时,表观羧化效率也有所减小;在光强和CO2浓度协同作用下,光合速率的响应遵循双底物的米氏方程,在光强和CO2浓度均趋于饱和时,北方粳稻(品种:辽粳294)剑叶的潜在最大光合速率为71.737 8 μmol•m-2•s-1,表观量子效率为0.056 0 μmolCO2•μmol-1 photons,表观羧化效率为0.103 1 μmol•m-2•s-1/μmol•mol-1。气孔导度也随光的增强而增大,对光强的响应规律也可以用Michaelis-Menten曲线模拟,而叶面CO2浓度的提高会使气孔导度减小,气孔导度(Gs)对叶面CO2浓度(Cs)的响应可以用Gs=Gmax,c/(1+Cs/Cs0)的双曲线方程模拟。在光强(PFD)和CO2浓度协同作用下,气孔导度可以用式Gs=Gmax(PFD/PFDc)/[(1+PFD/PFDc)(1+Cs/Cs0)]+Gct估算,当CO2浓度趋于0而光强趋于饱和时,北方粳稻的潜在最大气孔导度(Gmax)为0.670 9 mol•m-2•s-1。在光强和CO2浓度协同作用下,Ball-Berry模型及其修正形式依然能很好地表达气孔导度-光合速率的耦合关系,并且用叶面饱和水汽压差(Ds)修正耦合关系中的相对湿度可以提高模拟精度。  相似文献   

8.
 通过对不同土壤水分状况、不同CO2浓度条件下春小麦叶片气孔的观测结果表明:干旱和CO2浓度升高不仅影响叶片气孔密度,而且也影响其分布。随干旱程度的加剧,气孔密度有明显的上升趋势,气孔在叶片上的分布趋向均匀;随CO2浓度的升高,气孔密度有明显的下降趋势,其分布也趋向均匀。水分状况和CO2浓度相同时,气孔密度及分布受不同温度的影响。  相似文献   

9.
10.
The initial stimulation of photosynthesis observed on elevation of [CO2] in grasslands has been predicted to be a transient phenomenon constrained by the loss of photosynthetic capacity due to other limitations, notably nutrients and sinks for carbohydrates. Legumes might be expected partially to escape these feedbacks through symbiotic N2 fixation. The Free-Air Carbon dioxide Enrichment (FACE) experiment at Eschikon, Switzerland, has been the longest running investigation of the effects of open-air elevation of [CO2] on vegetation. The prediction of a long-term loss of photosynthetic capacity was tested by analysing photosynthesis in Trifolium repens L. (cv. Milkanova) in the spring and autumn of the eighth, ninth and tenth years of treatment. A high and low N treatment also allowed a test of the significance of exogenous N-supply in maintaining a stimulation of photosynthetic capacity in the long-term. Prior work in this Free Air CO2 Enrichment (FACE) experiment has revealed that elevated [CO2] increased both vegetative and reproductive growth of T. repens independent of N treatment. It is shown here that the photosynthetic response of T. repens was also independent of N fertilization under both current ambient and elevated (600 micro mol mol-1) [CO2]. There was a strong effect of season on photosynthesis, with light-saturated rates (Asat) 37% higher in spring than in autumn. Higher Asat in the spring was supported by higher maximum Rubisco carboxylation rates (Vc,max) and maximum rates of electron transport (Jmax) contributing to RuBP regeneration. Elevated [CO2] increased Asat by 37% when averaged across all measurement periods and both N fertilization levels, and decreased stomatal conductance by 25%. In spring, there was no effect of elevated [CO2] on photosynthetic capacity of leaves, but in autumn both Vc,max and Jmax were reduced by approximately 20% in elevated [CO2]. The results show that acclimation of photosynthetic capacity can occur in a nitrogen-fixing species, in the field where there are no artificial restrictions on sink capacity. However, even with acclimation there was a highly significant increase in photosynthesis at elevated [CO2].  相似文献   

11.
To determine the contribution of photosynthesis on stomatal conductance, we contrasted the stomatal red light response of wild-type tobacco (Nicotiana tabacum 'W38') with that of plants impaired in photosynthesis by antisense reductions in the content of either cytochrome b(6)f complex (anti-b/f plants) or Rubisco (anti-SSU plants). Both transgenic genotypes showed a lowered content of the antisense target proteins in guard cells as well as in the mesophyll. In the anti-b/f plants, CO(2) assimilation rates were proportional to leaf cytochrome b(6)f content, but there was little effect on stomatal conductance and the rate of stomatal opening. To compare the relationship between photosynthesis and stomatal conductance, wild-type plants and anti-SSU plants were grown at 30 and 300 micromol photon m(-2) s(-1) irradiance (low light and medium light [ML], respectively). Growth in ML increased CO(2) assimilation rates and stomatal conductance in both genotypes. Despite the significantly lower CO(2) assimilation rate in the anti-SSU plants, the differences in stomatal conductance between the genotypes were nonsignificant at either growth irradiance. Irrespective of plant genotype, stomatal density in the two leaf surfaces was 2-fold higher in ML-grown plants than in low-light-grown plants and conductance normalized to stomatal density was unaffected by growth irradiance. We conclude that the red light response of stomatal conductance is independent of the concurrent photosynthetic rate of the guard cells or of that of the underlying mesophyll. Furthermore, we suggest that the correlation of photosynthetic capacity and stomatal conductance observed under different light environments is caused by signals largely independent of photosynthesis.  相似文献   

12.
In vitro-cultured plants typically show a low photosynthetic activity, which is considered detrimental to subsequent ex vitro acclimatization. Studies conducted so far have approached this problem by analysing the biochemical and photochemical aspects of photosynthesis, while very little attention has been paid to the role of leaf conductance to CO(2) diffusion, which often represents an important constraint to CO(2) assimilation in naturally grown plants. Mesophyll conductance, in particular, has never been determined in in vitro plants, and no information exists as to whether it represents a limitation to carbon assimilation during in vitro growth and subsequent ex vitro acclimatization. In this study, by means of simultaneous gas exchange and chlorophyll fluorescence measurements, the stomatal and mesophyll conductance to CO(2) diffusion were assessed in in vitro-cultured plants of the grapevine rootstock '41B' (Vitis vinifera 'Chasselas'xVitis berlandieri), prior to and after ex vitro acclimatization. Their impact on electron transport rate partitioning and on limitation of potential net assimilation rate was analysed. In vitro plants had a high stomatal conductance, 155 versus 50 mmol m(-2) s(-1) in acclimatized plants, which ensured a higher CO(2) concentration in the chloroplasts, and a 7% higher electron flow to the carbon reduction pathway. The high stomatal conductance was counterbalanced by a low mesophyll conductance, 43 versus 285 mmol m(-2) s(-1), which accounted for a 14.5% estimated relative limitation to photosynthesis against 2.1% estimated in acclimatized plants. It was concluded that mesophyll conductance represents an important limitation for in vitro plant photosynthesis, and that in acclimatization studies the correct comparison of photosynthetic activity between in vitro and acclimatized plants must take into account the contribution of both stomatal and mesophyll conductance.  相似文献   

13.
Increasing our understanding of the factors regulating seasonal changes in rice canopy carbon gain (C(gain): daily net photosynthesis -- night respiration) under elevated CO(2) concentrations ([CO(2)]) will reduce our uncertainty in predicting future rice yields and assist in the development of adaptation strategies. In this study we measured CO(2) exchange from rice (Oryza sativa) canopies grown at c. 360 and 690 micromol mol(-1)[CO(2)] in growth chambers continuously over three growing seasons. Stimulation of C(gain) by elevated [CO(2)] was 22-79% during vegetative growth, but decreased to between -12 and 5% after the grain-filling stage, resulting in a 7-22% net enhancement for the whole season. The decreased stimulation of C(gain) resulted mainly from decreased canopy net photosynthesis and partially from increased respiration. A decrease in canopy photosynthetic capacity was noted where leaf nitrogen (N) decreased. The effect of elevated [CO(2)] on leaf area was generally small, but most dramatic under ample N conditions; this increased the stimulation of whole-season C(gain). These results suggest that a decrease in C(gain) enhancement following elevated CO(2) levels is difficult to avoid, but that careful management of nitrogen levels can alter the whole-season C(gain) enhancement.  相似文献   

14.
Kellomäki  Seppo  Wang  Kai-Yun 《Plant Ecology》1998,136(2):229-248
Starting in early spring of 1994, naturally regenerated, 30-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers and exposed in situ to doubled ambient O3,doubled ambient CO2 and a combination of O3 and CO2 from 15 April to 15 September. To investigate daily and seasonal responses of CO2 exchange to elevated O3 and CO2, the CO2 exchange of shoots was measured continuously by an automatic system for measuring gas exchange during the course of one year (from 1 Januray to 31 December 1996). A process-based model of shoot photosynthesis was constructed to quantify modifications in the intrinsic capacity of photosynthesis and stomatal conductance by simulating the daily CO2 exchange data from the field. Results showed that on most days of the year the model simulated well the daily course of shoot photosynthesis. Elevated O3 significantly decreased photosynthetic capacity and stomatal conductance during the whole photosynthetic period. Elevated O3 also led to a delay in onset of photosynthetic recovery in early spring and an increase in the sensitivity of photosynthesis to environmental stress conditions. The combination of elevated O3 and CO2 had an effect on photosynthesis and stomatal conductance similar to that of elevated O3 alone, but significantly reduced the O3-induced depression of photosynthesis. Elevated CO2 significantly increased the photosynthetic capacity of Scots pine during the main growing season but slightly decreased it in early spring and late autumn. The model calculation showed that, compared to the control treatment, elevated O3 alone and the combination of elevated O3 and CO2 decreased the annual total of net photosynthesis per unit leaf area by 55% and 38%, respectively. Elevated CO2 increased the annual total of net photosynthesis by 13%.  相似文献   

15.
气孔导度对CO2浓度变化的模拟及其生理机制   总被引:2,自引:0,他引:2  
王建林  温学发 《生态学报》2010,30(17):4815-4820
基于气孔运动的生理生化机制重点进行了气孔导度(gs)对CO2浓度变化的响应机制分析,并推导得到气孔导度(gs)对CO2浓度变化响应模型,并以9种植物进行了模型验证。结果表明:随着CO2浓度的升高,气孔导度会逐渐降低,且下降的幅度会随着CO2浓度的升高而逐渐减弱。气孔导度对CO2浓度(Cs)变化的响应模型可以表达为gs=gmax/(1+Cs/Cs0),其中式中gmax是最大气孔导度和Cs0是实验常数。该模型较好地模拟了气孔导度随CO2浓度变化的规律,模型参数具有明确的生理意义,与Jarvis模型和Ball-Berry模型相比,该模型如何实现多种环境因子的耦合有待进一步突破。另外,模型是在短期改变叶片CO2浓度的条件下得出的,在CO2浓度长期胁迫下的适用性也有待进一步确认。  相似文献   

16.
J. Janáek 《Photosynthetica》1997,34(3):473-476
A water stress effect on photosynthesis and transpiration of wheat seedlings at 50-500 µmol(CO2) mol-1 was measured in an open gas exchange system. The limitation of photosynthesis by stomatal conductance was quantified by a stomatal control coefficient of the net photosynthetic rate. The stomatal control coefficient increased linearly as the water potential of root media decreased to -1 MPa, and it decreased with increasing CO2 concentration.  相似文献   

17.
This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2].  相似文献   

18.
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 degrees C-RZT and a fluctuating ambient (A-) RZT from 23-40 degrees C. Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (gs), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio Fv/Fm than 20 degrees C-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although Fv/Fm did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (gs sat) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure. However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O2 evolution (Pmax), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P(max) during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.  相似文献   

19.
The objectives of this study were to determine the effects of UV-B radiation and atmospheric carbon dioxide concentrations ([CO(2)]) on leaf senescence of cotton by measuring leaf photosynthesis and chlorophyll content and to identify changes in leaf hyperspectral reflectance occurring due to senescence and UV-B radiation. Plants were grown in controlled-environment growth chambers at two [CO(2)] (360 and 720 micro mol mol(-1)) and three levels of UV-B radiation (0, 7.7 and 15.1 kJ m(-2) day(-1)). Photosynthesis, chlorophyll, carotenoids and phenolic compounds along with leaf hyperspectral reflectance were measured on three leaves aged 12, 21 and 30 days in each of the treatments. No interaction was detected between [CO(2)] and UV-B for any of the measured parameters. Significant interactions were observed between UV-B and leaf age for photosynthesis and stomatal conductance. Elevated [CO(2)] enhanced leaf photosynthesis by 32%. On exposure to 0, 7.7 and 15.1 kJ of UV-B, the photosynthetic rates of 30-day-old leaves compared with 12-day-old leaves were reduced by 52, 76 and 86%, respectively. Chlorophyll pigments were not affected by leaf age at UV-B radiation of 0 and 7.7 kJ, but UV-B of 15.1 kJ reduced the chlorophylls by 20, 60 and 80% in 12, 21 and 30-day-old leaves, respectively. The hyperspectral reflectance between 726 and 1142 nm showed interaction for UV-B radiation and leaf age. In cotton, leaf photosynthesis can be used as an indicator of leaf senescence, as it is more sensitive than photosynthetic pigments on exposure to UV-B radiation. This study revealed that, cotton leaves senesced early on exposure to UV-B radiation as indicated by leaf photosynthesis, and leaf hyperspectral reflectance can be used to detect changes caused by UV-B and leaf ageing.  相似文献   

20.
Increases in both atmospheric CO2 concentration ([CO2]) and ultraviolet-B (UV-B) radiation on the Earth's surface are features of current climate change patterns. An experiment was conducted in sunlit, controlled environment chambers known as Soil-Plant-Atmosphere-Research (SPAR) units to determine interactive effects of elevated [CO2] and UV-B radiation on leaf and canopy photosynthetic characteristics of cotton. Six treatments were comprised of two CO2 levels of 360 (ambient) and 720 (elevated) microL L(-1) and three levels of 0 (control), 8, and 16 kJ m(-2) d(-1) biologically effective UV-B radiation. Treatments were imposed for 66 days from crop emergence through three weeks after the first flower stage. Plants grown in elevated [CO2] had significantly greater leaf area, higher leaf and canopy net photosynthetic rates (PN), lower dark respiration rate (Rd), and lower light compensation point (LCP) than plants grown in ambient [CO2]. There was no difference in CO2 compensation point (gamma), maximum rate of Rubisco activity (Vcmax), or light-saturated rate of electron transport (Jmax) between ambient and elevated CO2 treatments. When plants were grown in 8 kJ m(-2) d(-1) UV-B radiation, most of the measured photosynthetic parameters did not differ from control plants. High UV-B (16 kJ) radiation, however, caused 47-50% smaller leaf area, 38-44% lower leaf PN, 72-74% lower Vcmax, and 61-66% lower Jmax compared to the control. There were no interactive effects of [CO2] and UV-B radiation on most of the photosynthetic parameters measured. From the results, it is concluded that decreased canopy photosynthesis due to enhanced UV-B radiation in cotton is associated with both smaller leaf area and lower leaf PN, and loss of Rubisco activity and electron transport are two major factors in UV-B inhibition of leaf PN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号