首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
经细胞学观察发现,转反义PG基因番茄果实在不同成熟期及存放前后,其果皮外面几层细胞的厚度都比未转基因的厚1~5 μm,细胞结构、细胞质和细胞核等的状态都有明显区别。尤以贮存后更为明显,未转基因果实的果皮细胞结构解体、细胞质凝聚、细胞核变的模糊程度都比转基因的严重。经外源乙烯处理后,转基因和未转基因果实的细胞结构也有相似的变化。结果表明:反义PG基因的转入降低了PG活性,并且减弱了外源乙烯的作用,延缓了果实的衰老,提高了耐贮性能,从而起到果实保鲜作用。  相似文献   

2.
番茄果实中乙烯与多聚半乳糖醛酸酶的关系   总被引:6,自引:0,他引:6  
乙烯与多聚半乳糖醛酸酶(PG)都是果实成熟过程中关键的调节因子.一方面,在有乙烯合成缺陷的转反义ACS番茄和乙烯感受缺陷的Nr突变体番茄果实中PG基因表达量都明显下降,PG酶活性明显降低;用外源乙烯(100 μL/L)处理绿熟期番茄果实使PG基因的表达明显增强,而1-甲基环丙烯(1-MCP,1 μL/L)处理转色期番茄果实明显抑制PG基因表达.另一方面,转反义PG基因番茄果实乙烯释放量在授粉后低于其野生型,番茄乙烯受体基因LeETR4和乙烯反应因子LeERF2基因表达量比野生种低.PG降解果胶的产物D-GA(100 mg/L)促进未熟期番茄果实中的乙烯生成和LeETR4、LeERF2基因的表达.  相似文献   

3.
Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA showed <10% of wild-type PME enzyme activity and undetectable levels of PME protein and mRNA. Lower PME enzyme activity in fruits from transgenic plants was associated with an increased molecular weight and methylesterification of pectins and decreased levels of total and chelator soluble polyuronides in cell walls. The fruits of transgenic plants also contained higher levels of soluble solids than wild-type fruits. This trait was maintained in subsequent generations and segregated in normal Mendelian fashion with the antisense PME gene. These results indicate that reduction in PME enzyme activity in ripening tomato fruits had a marked influence on fruit pectin metabolism and increased the soluble solids content of fruits, but did not interfere with the ripening process.  相似文献   

4.
系统比较了转多聚半乳糖醛酸酶(PG)反义基因和对照番茄果实成熟过程中绿熟、转色、粉顶、粉红、全红5个时期的PG活性和与其相关的生理、生化组分的动态变化。实验表明,转基因果与对照果相比,PG活性始终处于较低水平,PG活性强烈被抑制是在全红期;果实的硬度、贮藏寿命指数都高于对照果;番茄红素合成积累进程被延缓;可溶性果胶含量、电解质外渗百分率均低于对照果。外源乙烯刺激引起对照果PG活性剧增,而转基因果表现钝化。讨论了PG活性与果实成熟、耐贮性及软化的关系,及对外源乙烯刺激的敏感性。首次明确提出PG活性在对照果中极大地表达,在转基因果中强烈被抑制是在全红期 ,而不是在整个成熟期;PG活性在果实软化中起直接和重要作用;PG活性的高低与番茄红素的合成与积累有关。  相似文献   

5.
Fruit of tomato (Lycopersicon esculentum Mill.) in which endopolygalacturonase (PG) activity had been suppressed to <1% of wild-type levels were slightly firmer than nontransgenic controls later in ripening. Enzymically inactive cell walls were prepared from these ripening fruit using Tris-buffered phenol. When extracted with chelator followed by Na2CO3, the amounts of pectin solubilized from cell walls of nontransgenic control or from transgenic antisense PG fruit were similar. Size-exclusion chromatography analysis showed that, relative to controls, in antisense PG fruit polyuronide depolymerization was delayed in the chelator-soluble fraction throughout ripening and reduced in the Na2CO3-soluble fraction at the overripe stage. Reduced pectin depolymerization rather than altered extractability thus may have contributed to enhanced fruit firmness. Substantially larger effects of suppressed PG activity were detected in tomato fruit homogenates processed to paste. In control paste the majority of the polyuronide was readily soluble in water and was very highly depolymerized. In antisense PG paste the proportion of polyuronide solubilized by water was reduced, and polyuronides retained a high degree of polymerization. The suppression of fruit PG activity thus has a small effect on polyuronide depolymerization in the fruit but a much larger effect in paste derived from these fruit. This indicates that in the cell wall PG-mediated degradation of polyuronide is normally restricted but that in tissue homogenates or in isolated cell walls this restriction is removed and extensive pectin disassembly results unless PG is inactivated.  相似文献   

6.
为了研究转基因抗衰老番茄F2代果实贮藏后品质,本研究以丽春番茄为对照,转反义NR、F1'、F2和F3基因番茄为试材,分析了采后3~20d果实总糖、总酸、Vc的含量变化,结果为:转基因番茄除F2基因型总糖含量显著低于对照外,其余均无差异;总酸含量在贮藏20d后除F3与对照无差异外,均高于对照;各个基因型番茄在贮藏期Vc含量均高于对照41%~72%。综合分析结果显示F3即转反义ACS-CTR双价番茄果实贮藏后品质最好,F2(CTR)最差,NR、F1'(ACS)与对照相同。  相似文献   

7.
多聚半乳糖醛酸酶反义基因在转基因番茄中的表达   总被引:3,自引:0,他引:3  
番茄的多聚半乳糖醛酸是一种在果实成熟阶段特异性表达的酶。为了研究它在果实成熟中的作用,将其cDNA与花椰菜花叶病毒35S启动子嵌合后,以反义基因的形式经农杆菌介导导入番茄植株,进一步分析了反义基因的整合与表达。结果表明,在转基因番茄中,反义基因的表达能明显抑制果实内源多聚半乳糖醛酸酶的活性。  相似文献   

8.
Polygalacturonase (PG) is the major enzyme responsible for pectin disassembly in ripening fruit. Despite extensive research on the factors regulating PG gene expression in fruit, there is conflicting evidence regarding the role of ethylene in mediating its expression. Transgenic tomato (Lycopersicon esculentum) fruits in which endogenous ethylene production was suppressed by the expression of an antisense 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene were used to re-examine the role of ethylene in regulating the accumulation of PG mRNA, enzyme activity, and protein during fruit ripening. Treatment of transgenic antisense ACC synthase mature green fruit with ethylene at concentrations as low as 0.1 to 1 μL/L for 24 h induced PG mRNA accumulation, and this accumulation was higher at concentrations of ethylene up to 100 μL/L. Neither PG enzyme activity nor PG protein accumulated during this 24-h period of ethylene treatment, indicating that translation lags at least 24 h behind the accumulation of PG mRNA, even at high ethylene concentrations. When examined at concentrations of 10 μL/L, PG mRNA accumulated within 6 h of ethylene treatment, indicating that the PG gene responds rapidly to ethylene. Treatment of transgenic tomato fruit with a low level of ethylene (0.1 μL/L) for up to 6 d induced levels of PG mRNA, enzyme activity, and protein after 6 d, which were comparable to levels observed in ripening wild-type fruit. A similar level of internal ethylene (0.15 μL/L) was measured in transgenic antisense ACC synthase fruit that were held for 28 d after harvest. In these fruit PG mRNA, enzyme activity, and protein were detected. Collectively, these results suggest that PG mRNA accumulation is ethylene regulated, and that the low threshold levels of ethylene required to promote PG mRNA accumulation may be exceeded, even in transgenic antisense ACC synthase tomato fruit.  相似文献   

9.
Polygalacturonase (PG, EC 3.2.1.15), an enzyme commonly found in ripening fruit, has also been shown to be associated with abscission. A zone-specific rise in PG activity accompanies the abscission of both leaves and flowers of tomato (Lycopersicon esculentum Mill.) plants. Studies of transgenic plants expressing an antisense RNA for fruit PG indicate that although the enzyme activity in transgenic fruit is < 1 % of that in untransformed fruit, the PG activity in the leaf abscission zone increases during separation to a similar value to that in untransformed plants. The timing and rate of leaf abscission in transgenic plants are unaffected by the introduction of the antisense gene. A polyclonal antibody raised against tomato fruit PG does not recognise the leaf abscission protein. Furthermore a complementary DNA (cDNA) clone (pTOM6), which has been demonstrated to code for fruit PG, does not hybridise to mRNA isolated from the abscission-zone region of tomato leaves. These results indicate that the PG protein in abscission zones of tomato is different from that in the fruit, and that the gene coding for this protein may also be different.Abbreviation PG polygalacturonase The authors of this paper are grateful to David Jackson of the John Innes Institute, Norwich, UK for his assistance with the in-situ hybridisation work. This research was supported by an Agricultural and Food Research Council Post-Doctoral award to J.E.T., and by a grant to D.G. from the Science and Engineering Research Council Biotechnology Directorate in association with ICI seeds. The work was carried out under Ministry of Agriculture, Food and Fisheries licences.  相似文献   

10.
用番茄乙烯形成酶(EFE)和多聚半乳糖醛酸酶(PG)反义cDNA转化番茄子叶,获得两个转基因系统。分别比较了两个基因系统果实和叶片的乙烯生成速率、果实中EFE酶活性和果胶酶活性,表明反义EFE基因在番茄工程植株中能显著抑制EFE酶活性和乙烯生成;反义PG基因则主要是抑制其PG酶活性。  相似文献   

11.
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene.  相似文献   

12.
E M Klann  B Hall    A B Bennett 《Plant physiology》1996,112(3):1321-1330
Invertase (beta-fructosidase, EC 3.2.1.26) hydrolyzes sucrose to hexose sugars and thus plays a fundamental role in the energy requirements for plant growth and maintenance. Transgenic plants with altered extracellular acid invertase have highly disturbed growth habits. We investigated the role of intracellular soluble acid invertase in plant and fruit development. Transgenic tomato (Lycopersicon esculentum Mill.) plants expressing a constitutive antisense invertase transgene grew identically to wild-type plants. Several lines of transgenic fruit expressing a constitutive antisense invertase gene had increased sucrose and decreased hexose sugar concentrations. Each transgenic line with fruit that had increased sucrose concentrations also had greatly reduced levels of acid invertase in ripe fruit. Sucrose-accumulating fruit were approximately 30% smaller than control fruit, and this differential growth correlated with high rates of sugar accumulation during the last stage of development. These data suggest that soluble acid invertase controls sugar composition in tomato fruit and that this change in composition contributes to alterations in fruit size. In addition, sucrose-accumulating fruit have elevated rates of ethylene evolution relative to control fruit, perhaps as a result of the smaller fruit size of the sucrose-accumulating transgenic lines.  相似文献   

13.
To modulate the soluble sugar content of strawberry fruits, we generated transgenic plants that incorporated an antisense cDNA of ADP-glucose pyrophosphorylase (AGPase) small subunit (FagpS) under the control of the strawberry fruit-dominant ascorbate peroxidase (APX) promoter (cv. Anther). Several independent transgenic lines were obtained and grown in the greenhouse for analysis of agronomic traits. Most transgenic fruit did not show significant differences in weight and hardness compared to control fruit. However, the starch content in fruit was decreased to 27–47% and the total soluble sugar content was increased to 16–37% in transgenic plants (analyzed by the HPLC of sugar composition at four different stages of fruit development). The sugar contents of fruits in transgenic lines were particularly higher than control fruits at the red stage. The results were consistent with northern analysis, which showed that the levels of AGPase mRNA drastically were reduced in the red stage of fruits in all the transgenic plants. In other tissues of transgenic plants, the FagpS mRNA expression level was similar to control plants. Our studies indicate that fruit-specific down-regulation of the AGPase gene might be an effective strategy for increasing sugar and decreasing starch content in strawberry.  相似文献   

14.
Molecular biological characterization,fruit characters,and nutrients were analyzed for T4 generation of transgenic papaya.All transgenic papaya plants with the mutated replicase (RP) gene from papaya ringspot virus (PRSV) showed high resistance or immunity against PRSV in the field.The RP transgene can be steadily inherited to,and expressed at RNA level,the progenies.The growth characteristics of transgenic papaya were much better than nontransgenic papaya in the field.The non-transgenic papaya seedlings began to show typical symptoms caused by PRSV after being inoculated with PRSV.They died quickly and never grew to produce fruit.The adult trees developed yellow leaves and produced smaller fruits and were doomed to a slow death after some time,while most oftransgenic papaya plants (about 91.8%) did not show any symptoms caused by PRSV,and produced more,bigger,and high quality fruits.Compared with non-transgenic plants,the fresh fruit length of T4 generation of transgenic papaya increased 2.6%-5%,and the diameter decreased 0.6%-1.5%.The flesh thickness of fresh fruit increased 12%-15%,which made it fitter for eating.Although the fresh fruit quality changed,there was no significant difference between transgenic and non-transgenic papaya.The quality characteristics of dry fruit including the contents of water,lipid,N,protein,reduced sugar,vitamin A,vitamin C,and carotene in the T4 generation of transgenic papaya were all the same as their non-transgenic parents.This means that transgenic plants and non-transgenic plants are substantially equivalent,and the transgene has no effect on dry fruit quality.In this study,we found that vitamin A and vitamin C in red-fleshed papaya were 1.4-1.8 and 1.78-2.07 times more than the yellow-fleshed ones,respectively,while N and protein were only 84.2%-92.1% and 82.1%-98.9% of the yellow-fleshed ones.  相似文献   

15.
To elucidate the role of ethylene in the production of flavor compounds by tomato fruits, wild-type tomato (Lycopersicon esculentum L., cv. Lichun) and its transgenic antisense LeACS2 line with suppressed ethylene biosynthesis were used. The metabolism of individual sugars was ethylene-independent. However, citric acid and malic acid were under ethylene regulation. The content of these acids was higher in transgenic tomato fruits and returned to normal level after transgenic fruits were treated with ethylene. Because most of amino acids, which are important precursors of volatiles, were shown to be correlated with ethylene, we surmise that amino acid-related aroma volatiles were also affected by ethylene. Headspace analysis of volatiles showed a significant accumulation of aldehydes in wild-type tomato fruits during fruit ripening and showed a dramatic decrease in most aroma volatiles in transgenic tomato fruits as compared with wild-type fruits. The production of hexanal, hexanol, trans-2-heptenal, cis-3-hexanol, and carotenoid-related volatiles, except β-damascenone and β-ionone, was inhibited by suppression of ethylene biosynthesis. No remarkable differences were observed in the concentrations of cis-3-hexenal and trans-2-hexenal between transgenic and wild-type tomato fruits, indicating these two volatiles to be independent of ethylene. Thus, there are various regulation patterns of flavor profiles in tomato fruits by ethylene. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 1, pp. 92–101. The text was submitted by the authors in English. Both authors equally contributed to this work.  相似文献   

16.
Tieman DM  Handa AK 《Plant physiology》1994,106(2):429-436
Pectin methylesterase (PME, EC 3.1.1.11) is an ubiquitous enzyme in the plant kingdom; however, its role in plant growth and development is not yet understood. Using transgenic tomato (Lycopersicon esculentum Mill.) fruits that show more than 10-fold reduction in PME activity because of expression of an antisense PME gene, we have investigated the role of PME in tomato fruit ripening. Our results show that reduced PME activity causes an almost complete loss of tissue integrity during fruit senescence but shows little effect on fruit firmness during ripening. Low PME activity in the transgenic fruit pericarp modified both accumulation and partitioning of cations between soluble and bound forms and selectively impaired accumulation of Mg2+ over other major cations. Decreased PME activity was associated with a 30 to 70% decrease in bound Ca2+ and Mg2+ in transgenic pericarp. Levels of soluble Ca2+ increase 10 to 60%, whereas levels of soluble Mg2+ and Na+ are reduced by 20 to 60% in transgenic pericarp. Changes in cation levels associated with lowered PME activity do not affect the rate of respiration or membrane integrity of fruit during ripening. Overall, these results suggest that PME plays a role in determining tissue integrity during fruit senescence, perhaps by regulating cation binding to the cell wall.  相似文献   

17.
Cell walls of tomato (Lycopersicon esculentum Mill.) fruit, prepared so as to minimize residual hydrolytic activity and autolysis, exhibit increasing solubilization of pectins as ripening proceeds, and this process is not evident in fruit from transgenic plants with the antisense gene for polygalacturonase (PG). A comparison of activities of a number of possible cell wall hydrolases indicated that antisense fruit differ from control fruit specifically in their low PG activity. The composition of cell wall fractions of mature green fruit from transgenic and control (wild-type) plants were indistinguishable except for trans-1,2-diaminocyclohexane-N,N,N[prime],N[prime]-tetraacetic acid (CDTA)-soluble pectins of transgenic fruit, which had elevated levels of arabinose and galactose. Neutral polysaccharides and polyuronides increased in the water-soluble fraction of wild-type fruit during ripening, and this was matched by a decline in Na2CO3-soluble pectins, equal in magnitude and timing. This, together with compositional analysis showing increasing galactose, arabinose, and rhamnose in the water-soluble fraction, mirrored by a decline of these same residues in the Na2CO3-soluble pectins, suggests that the polyuronides and neutral polysaccharides solubilized by PG come from the Na2CO3-soluble fraction of the tomato cell wall. In addition to the loss of galactose from the cell wall as a result of PG activity, both antisense and control fruit exhibit an independent decline in galactose in both the CDTA-soluble and Na2CO3-soluble fractions, which may play a role in fruit softening.  相似文献   

18.
C F Watson  L Zheng    D DellaPenna 《The Plant cell》1994,6(11):1623-1634
The developmental changes that accompany tomato fruit ripening include increased solubilization and depolymerization of pectins due to the action of polygalacturonase (PG). Two PG isoenzymes can be extracted from ripe fruit: PG2, which is a single catalytic PG polypeptide, and PG1, which is composed of PG2 tightly associated with a second noncatalytic protein, the beta subunit. Previous studies have correlated ripening-associated increases in pectin solubilization and depolymerization with the presence of extractable PG1 activity, prior to the appearance of PG2, suggesting a functional role for the beta subunit and PG1 in pectin metabolism. To assess the function of the beta subunit, we produced and characterized transgenic tomatoes constitutively expressing a beta subunit antisense gene. Fruit from antisense lines had greatly reduced levels of beta subunit mRNA and protein and accumulated < 1% of their total extractable PG activity in ripe fruit as PG1, as compared with 25% for wild type. Inhibition of beta subunit expression resulted in significantly elevated levels of EDTA-soluble polyuronides at all stages of fruit ripening and a significantly higher degree of depolymerization at later ripening stages. Decreased beta subunit protein and extractable PG1 enzyme activity and increased pectin solubility and depolymerization all cosegregated with the beta subunit antisense transgene in T2 progeny. These results indicate (1) that PG2 is responsible for pectin solubilization and depolymerization in vivo and (2) that the beta subunit protein is not required for PG2 activity in vivo but (3) does play a significant role in regulating pectin metabolism in wild-type fruit by limiting the extent of pectin solubilization and depolymerization that can occur during ripening. Whether this occurs by direct interaction of the beta subunit with PG2 or indirectly by interaction of the beta subunit with the pectic substrate remains to be determined.  相似文献   

19.
PG与番茄果实成熟的关系   总被引:12,自引:0,他引:12  
系统比较了转多聚半乳糖醛酸酶(PG)反义基因和对照番茄果实成熟过程中绿熟、转色、粉顶、粉红、全红5个时期的PG活性和与其相关的生理、生化组分的动态变化.实验表明,转基因果与对照果相比,PG活性始终处于较低水平,PG活性强烈被抑制是在全红期;果实的硬度、贮藏寿命指数都高于对照果;番茄红素合成积累进程被延缓;可溶性果胶含量、电解质外渗百分率均低于对照果.外源乙烯刺激引起对照果PG活性剧增,而转基因果表现钝化.讨论了PG活性与果实成熟、耐贮性及软化的关系,及对外源乙烯刺激的敏感性.首次明确提出PG活性在对照果中极大地表达,在转基因果中强烈被抑制是在全红期,而不是在整个成熟期;PG活性在果实软化中起直接和重要作用;PG活性的高低与番茄红素的合成与积累有关.  相似文献   

20.
cDNA for an acid invertase (EC 3.2.1.26 [EC] ) of tomato (Lycopersiconesculentum Mill.) fruit was introduced into tomato plants underthe control of the cauliflower mosaic virus 35S promoter inthe antisense orientation. The antisense gene effectively suppressedthe invertase activity in soluble and cell wall fractions fromripening fruits. The sucrose content of fruits of the transformantswas markedly increased, while the hexose content was reduced.These results indicate that acid invertase is one of main determinantsof the sugar composition of tomato fruit. The invertase activityin the cell wall fraction of the leaf tissues of the transformantswas not suppressed to the same extent as that in the solublefraction. Wounding of the control leaf tissues induced invertaseactivity in both soluble and cell wall fractions. The inductionof activity in the soluble fraction was suppressed by the antisensegene, while that in the cell wall fraction was unaffected. Thesefindings suggest that mRNA for some other invertase, in particular,the mRNA for a cell wall-bound invertase, was present in leaves. 1Present address: Plant Breeding and Genetics Research Laboratory,Japan Tobacco Inc., 700 Higashibara, Toyoda, Iwata, Shizuoka,438 Japan. 2Present address: National Institute of Agrobiological Resources,Kannondai, Tsukuba, Ibaraki, 305 Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号