首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水松的次生韧皮部解剖及其系统位置的讨论   总被引:3,自引:0,他引:3  
在光学显微镜和扫描电子显微镜下观察,水松茎次生韧皮部的主要特征为:韧皮部由轴向系统和径向系统组成。轴向系统由筛胞、韧皮薄壁组织细胞、蛋白细胞和韧皮纤维组成,径向系统由韧皮射线组成。在横切面上,轴向系统的各组成分子以单层切向带交替有规律的排列,其排列顺序为:筛胞-韧皮薄壁组织细胞-韧皮纤维-筛胞。筛胞的径向壁上嵌埋有草酸钙结晶,韧皮纤维仅一种类型,韧皮射线同型、单列。根据水松茎次生韧皮部的解剖研究,并与杉科其它各属的有关资料进行比较,我们认为:水松属与水杉属和落羽杉属有较近的亲缘关系。  相似文献   

2.
红豆杉科次生韧皮部的比较解剖   总被引:3,自引:0,他引:3  
在光学显微镜及扫描电镜下,比较观察了红豆杉科Taxaceae5属即红豆杉属Taxus,白豆杉属Pseudotaxus、穗花杉属Amentotaxus,榧树属Torreya和澳洲红豆杉属8种植物茎次生韧皮部的结构。其主要结果为:红豆杉科植物茎次生皮部由轴向系统和径向系统两部分构成。轴向系统由筛胞,韧皮薄壁组织细胞,蛋白细胞及韧皮纤维组成;径向系统由韧皮射线构成,但是,在横切面上,各个组成分子的层次有  相似文献   

3.
Secondary phloem anatomy of several species of Cycadeoidea is described from trunks in the Wieland Collection, Peabody Museum of Natural History. The trunks were collected from the Lakota Formation, Lower Cretaceous, Black Hills of South Dakota. Secondary phloem is extensively developed and consists of alternating, tangential bands of fibers and sieve elements, with rare phloem parenchyma. Uniseriate rays, 2-22 cells high, occur between every one to three files of the axial system. Fibers are long, more than 1200 μm, approximately 26.6-34.2 μm in diameter, and have slit-like apertures on the lateral walls. Sieve elements range from 16-25 μm in diameter and are up to 500 μm long. Elliptical sieve areas appear on both end and radial walls and measure 10 μm across; minute spots, which may represent sieve pores, are present within the sieve areas. Secondary phloem of North American Cycadeoidea is similar in organization (alternating tangential bands) and cell types (sieve cells, fibers, axial parenchyma) to that known in other extant and fossil cycadophytes and some seed ferns. The unusual pattern of cell types and thickness of secondary phloem is discussed in the context of plant habit, phloem efficiency, and potential phylogenetic importance.  相似文献   

4.
The structure of the secondary phloem and the development of the crystaleiferous phloem fibers in the stem of Torrey grandis were observed under the ligth microscope and SEM. The secondary phloem is composed of sieve cells, phloem parenchyma cells, crystalliferous phloem fibers and stone cells in the longitudinal system, and the uniserite homogeneous phloem rays consisting of parenchyma cells only in the radial system. In the cross section, there are 3–9 sieve cells in radial rows forming discontinuous tangential layers, the crystalliferous phloem fibers often in a single discontinuous tangential layer and the stone cells dispersed in rangential layer of phloem parenchyma. The developmental process of crystalliferous phloem fibers is as follows: initial cells appeared in the end of April and were well differentiated in the first week of May. Some crystals were deposited in the primary wall, while others were free in the cell. At the end of May, the secondary wall of most crysalliferous phloem fibers started to be thickened. With the thickening of the secondary wall, all the crystals were embedded in the wall from June to August From the end of September to the early days of October, the crystalliferous phloem fibers reached their full maturation. It is shown by microchemical identification and EDAX analysis that the crystals embedded in the wail of crystalliferous phloem fibers are calcium oxalate crystals.  相似文献   

5.
Stem anatomy and development of medullary phloem are studied in the dwarf subshrub Cressa cretica L. (Convolvulaceae). The family Convolvulaceae is dominated by vines or woody climbers, which are characterized by the presence of successive cambia, medullary- and included phloem, internal cambium and presence of fibriform vessels. The main stems of the not winding C. cretica shows presence of medullary (internal) phloem, internal cambium and fibriform vessels, whereas successive cambia and included phloem are lacking. However, presence of fibriform vessels is an unique feature which so far has been reported only in climbing members of the family. Medullary phloem develops from peri-medullary cells after the initiation of secondary growth and completely occupies the pith region in fully grown mature plants. In young stems, the cortex is wide and formed of radial files of tightly packed small and large cells without intercellular air spaces. In thick stems, cortical cells become compressed due to the pressure developed by the radial expansion of secondary xylem, a feature actually common to halophytes. The stem diameter increases by the activity of a single ring of vascular cambium. The secondary xylem is composed of vessels (both wide and fibriform), fibres, axial parenchyma cells and uni-seriate rays. The secondary phloem consists of sieve elements, companion cells, axial and ray parenchyma cells. In consequence, Cressa shares anatomical characteristics of both climbing and non-climbing members. The structure of the secondary xylem is correlated with the habit and comparable with that of other climbing members of Convolvulaceae.  相似文献   

6.
This paper emphatically deals with the ultrastructure of albuminous cells in different stages of development in the secondary phloem of Pinus bungeana. The secondary phloem of Pinus bungeana is composed of sieve cells, axial parenchyma cells, radial plates and rays. Among the constituents, most of upright ray cells and radial plate parenchyma cells are albuminous cells. Although the shape and distribution of this kind of albuminous cells may be different, they possess the following common cytological characteristics. These cells have dense cytoplasm with abundant mitochondria, ribosomes, rough endoplasmic reticula and a large nucleus, the nuclei of some albuminous cells are lobed in shape which increases the outer surface of the nuclei. Usually the albuminous cell contains some starch granules, the quantity of the starch granules in albuminous cells is less than the other parenchyma cells of the secondary phloem. All these cytological characteristics suggest that albuminous cells are active physiologically. The distinguishing characteristics of albuminous cells from other parenchyma ceils are that the albuminous cells are associated with sieve cells through unilateral sieve area and they died together with the sieve cells.  相似文献   

7.
8.
The secondary phloem in Ephedra is atypical of the gymnosperms in general and exhibits several angiosperm-like characteristics. The ray system of the conducting phloem consists of parenchymatous, multiseriate rays. The axial system contains parenchyma cells, sieve cells, and unusual albuminous cells reminiscent of the specialized parenchyma cells found in some angiosperms. These cell types may intergrade with each other. P-protein in the developing sieve element appears early in the form of a single, ovoid slime body. Later, smaller slime bodies appear and quickly disperse. In the mature sieve element the single, ovoid slime body is lost, and P-protein is then evident in the form of a parietal cylinder, thread-like strands, amorphose globules, or a slime plug. Necrotic-appearing nuclei are commonly found in mature sieve cells.  相似文献   

9.
Taiwania Hayata contains two species: T.flousiana Gaussen and T. cryptomerioides Hayata, both endemic to China. T. flousiana was investigated with both light and scanning electron microscopes in respect to shoot apex, external and internal surfaces of leaf cuticle, primary leaf, juvenal and mature leaves, young stem, secondary phloem and wood of stem, etc, It is shown that the shoot apex consists of the following five regions: (1) the apical initials; (2) the protoderm, (3) the subapical moher cells;. (4) the peripheral meristem, and (5) the pith mother cells. The periclinal and anticlinal division of the apical initials takes place with approximately equal frequency. The juvenal leaf is nearly triangular or crescent-shaped in cross section and belongs to the leaf type II. The mature leaf is quadrangular in cross section (the leaf type I). There are a progressive series of changes in size and shape of the leaf cross section. The stoma of the mature leaf is amphicyclic and occasionally tricyclic. The crystals in the juvenal leaf cuticle are more abundant than those in the mature leaf cuticle. The transfusion tissue conforms to the Cupressus type. The structure of juvenal leaf is the nearest to that in Cunninghamia unicanaliculata D. Y. Wang et H. L. Liu, while the mature leaf is similar to that of the Cryptomeria. Sclerenchymatous cells of the hypodermis in the young stem comprise simple layers and are arranged discontinuously. No primary fibers are found in the primary phloem. Medullary sheath is present between the primary xylem and the pith. There are some sclereids in the pith. The secondary phloem of the stem consists of regularly alternate tangential layers of cells in such a sequence: sieve cells, phloem parenchyma cells, sieve cells, phloem fibers, sieve cells. The phloem fiber may be divided into thick-walled and thin-walled phloem fiber. The crystals of calcium oxalate in the radial walls of sieve cells are abundant. Homogeneous phloem rays are uniseriate or partly biseriate, 1-48 (2-13) cells high, and of 26-31 strips per square mm. Growth rings of the wood in Taiwania are distinct. The bordered pits on the radial walls of early wood tracheids are usually uniseriate, occasionally paired and opposite pitting. Wood parenchyma is present, and its cells contain brown resin substances. Their end walls are smooth, lacking nodular thickenings. Wood rays are homogeneous. Cross-field pits are cupressoid. Resin canals are absent. Based on the anatomy of Taiwania and comparison with the other genera of Taxodiaceae, the authors consider the establishment of Taiwaniaceae not reasonable, but rather support the view that the genus is better placed between Cuninghamia and Arthrotaxis in Taxodiaceae.  相似文献   

10.
The anatomical structures, especially the type, distribution and arrangement of the constituent elements in the secondary phloem of Euonymus bungeanus Maxim. have been studied. The results showed that the secondary phloem was thicker, consisted of sieve-tube elements, companion ceils ,phloem parenchyma cells ,secretory ceils and rays. Sieve-tube elements, phloem parenchyma cells and secretory cells were alternately arranged in tangential bands, forming a conspicuous zone-like constitution. There was no obvious boundary between the functional phloem and the non-functional phloem. Sieve-tube elements were long, slender cells with very oblique end walls and compound sieve plates. Sieve areas on lateral wall were highly differentiated. Companion cells were triangular in transection and slender in radial section. Mostly,two or three companion cells stayed along with one sieve-tube element. In the functional phloem, phloem parenchyma cells were also slender, containing a few starch grains;but in the nonfunctional phloem they enlarged and contained abundant starch grains. Secretory cells were longer than sieve-tube elements, consisting of rubber-like material. Rays were uniseriate. Finally, the authors also discussed the phylogenetic position of E. bungeanus, which may provide some references for further study of the classification of different genera of Celastraceae.  相似文献   

11.
本文研究和比较了杨柳科2属7种植物次生韧皮部解剖结构。结果表明:(1)杨属和柳属植物在次生初皮部解剖上有某些共同特征:次生韧皮部具有明显分层现象;韧皮纤维和含晶细胞与筛管分子、伴胞和韧皮薄壁组织细胞是切向带相间排列;筛管分子均为复筛板,端壁倾斜平均含有7-8个筛域。(2)两属植物在射线和晶体类型上有明显区别:柳属植物次生韧皮部无石细胞;杨属植物不具功能韧皮部中含有石细胞。(3)两属植物均有一些较为原始的韧皮部解剖特征。  相似文献   

12.
盐胁迫对2种珍贵速生树种种子萌发及幼苗生长的影响   总被引:3,自引:0,他引:3  
以1/2Hoagland营养液为基础培养液,研究了在0.1%、0.2%、0.4%和0.6%NaCl胁迫条件下,毛红椿〔Toona ciliata Roem. var. pubescens(Franch.)Hand.-Mazz.〕和水松〔Glyptostrobus pensilis(Staunt.ex D.Don)K.Koch〕的种子萌发和幼苗生长情况。结果表明,随着NaCl浓度的增加,2个树种的种子萌发率和简化苗木活力指数均明显下降,在0.1%、0.2%、0.4%和0.6%NaCl胁迫条件下,毛红椿和水松种子的最终萌发率分别为89.3%、87.3%、62.7%、32.0%和26.0%、16.7%、6.0%、3.3%,简化苗木活力指数分别为1.39~0.08和1.52~0.07,且毛红椿的种子萌发率和简化苗木活力指数均明显高于水松。萌发恢复实验结果表明,高浓度NaCl处理后的种子具有较高的萌发恢复率。根据实验结果初步判定毛红椿种子具有较强的耐盐性。  相似文献   

13.
The phloem of most fossil plants, including that of Sphenophyllum, is very poorly known. Sphenophyllum was a relatively small type of fossil arthrophyte with jointed stems bearing whorls of leaves ranging in form from wedge or fan-shaped to bifid, to linear. The aerial stem systems of the plant exhibited determinate growth involving progressive reduction in the dimensions of the stem primary bodies, fewer leaves per whorl, and smaller and simpler leaves distally. The primary phloem occurs in three areas alternating in position with the arms of the triarch centrally placed primary xylem. Cells of the primary phloem, presumably sieve elements, are axially elongate with horizontal to slightly tapered end walls. In larger stems with abundant secondary xylem and secondary cortex or periderm, a zone of secondary phloem occurs whose structure varies in the three areas opposite the arms of the primary xylem, as opposed to the three areas lying opposite the concave sides of the primary xylem. The axial system of the secondary phloem consists of vertical series of sieve elements with horizontal end walls. In the areas opposite the protoxylem the parenchyma is present as a prominent ray system showing dilation peripherally. Sieve elements in the areas opposite the protoxylem arms have relatively small diameters. In the areas between the protoxylem poles the secondary phloem sieve elements have large diameters and are less obviously in radial files, while the parenchyma resembles that of the secondary xylem in these areas in that it consists of strands of cells extending both radially and tangentially. An actively meristematic vascular cambium has not been found, indicating that this layer changed histologically after the cessation of growth in the determinate aerial stem systems and was replaced by a post-meristematic parenchyma sheath made up of axially elongate parenchyma lacking cells indicative of being either fusiform or ray initials. A phellogen arose early in development in a tissue believed to represent pericycle and produced tissue comparable to phellem externally. Normally, derivatives of the phellogen underwent one division prior to the maturation of the cells. Concentric bands of cells with dark contents apparently represent secretory tissue in the periderm and cell arrangements indicate that a single persistent phellogen was present. Sphenophyllum is compared with other arthrophytes as to phloem structure and is at present the best documented example of a plant with a functionally bifacial vascular cambium in any exclusively non-seed group of vascular plants.  相似文献   

14.
A comparative anatomical study on the secondary phloem of 5-genera, 10 species in Celastraceae was carried out. Based on the phloem structure characters, 3 phloem types were observed. In type Ⅰ , as seen in 5 species of Euonymus, the sieve-tube elements have more inclined end walls and numerous sieve areas (compound sieve plates), phloem rays are almost uniseriate. Type Ⅱ is seen in Celastrus and Tripterygium. It has relatively short sievetube elements, slight inclined end wall and sparse number of sieve areas: the phloem fiber is not lignified and ray is multiseriate. Type Ⅲ is observed in Dipentodon and Perrottetia, the sieve-tube elements are with simple sieve plate, the end wall is almost transverse, there are sclereid and fiber groups in the nonfounctional phloem, and phloem rays are uniseriate or biseriate.  相似文献   

15.
水松地理分布及其濒危原因   总被引:20,自引:0,他引:20  
水松(Glyptostrobus pensilis)被列为国家一级保护植物,主要分布于我国的广东、广西、江西、湖南、福建、四川和云南等省区和越南。根据野外调查、查阅标本和文献,结合水松的化石分布资料,对分布区内水松的生长状况和分布区的自然环境概况进行了分析,讨论了温度、雨量、光照和土壤等生态因子对水松地理分布的影响。导致水松濒危的主要原因有:历史时期气候变迁导致水松分布区大幅度缩小和居群数量剧烈下降;水松对生境要求严格;人为破坏严重。根据水松濒危的原因和现状,建议加强对水松原产地的保护,特别是保护那些遗传多样性高的居群;重视水松居群周围生境的保护;以及采取人工繁殖和进行迁地保护等策略。  相似文献   

16.
Summary Autoradiographic and microautoradiographic studies of 2-year-old Picea abies plants show that in summer leaf assimilates from the second-year shoot are translocated basipetally. Leaf assimilates are first transported to the stem via leaf trace phloem, then to the base of the stem in the sieve cells of the latest increment of secondary phloem. On the way down leaf assimilates move radially from sieve cells into cells of the phloem parenchyma, the vascular cambium, the rays, the inner periderm and certain cells of pith and cortex, including the epithelial cells surrounding the resin ducts. Other cells of pith and cortex remain nearly free of label, despite the long translocation time (20 h). With the exception of the vascular cambial cells, the stem cells that gain leaf assimilates by radial distribution coincide with those that contain chlorophyll and starch.  相似文献   

17.
In Ipomoea hederifolia Linn., stems increase in thickness by forming successive rings of cambia. With the increase in stem diameter, the first ring of cambium also gives rise to thin-walled parenchymatous islands along with thick-walled xylem derivatives to its inner side. The size of these islands increases (both radially and tangentially) gradually with the increase in stem diameter. In pencil-thick stems, that is, before the differentiation of a second ring of cambium, some of the parenchyma cells within these islands differentiate into interxylary phloem. Although all successive cambia forms secondary phloem continuously, simultaneous development of interxylary phloem was observed in the innermost successive ring of xylem. In the mature stems, thick-walled parenchyma cells formed at the beginning of secondary growth underwent dedifferentiation and led to the formation of phloem derivatives. Structurally, sieve tube elements showed both simple sieve plates on transverse to slightly oblique end walls and compound sieve plates on the oblique end walls with poorly developed lateral sieve areas. Isolated or groups of two to three sieve elements were noticed in the rays of secondary phloem. They possessed simple sieve plates with distinct companion cells at their corners. The length of these elements was more or less similar to that of ray parenchyma cells but their diameter was slightly less. Similarly, in the secondary xylem, perforated ray cells were noticed in the innermost xylem ring. They were larger than the adjacent ray cells and possessed oval to circular simple perforation plates. The structures of interxylary phloem, perforated ray cells, and ray sieve elements are described in detail.  相似文献   

18.
The genusPereskia, which contains numerous morphological features considered relictual in the Cactaceae, has numerous anatomical features that we consider to be relictual also. These were studied to establish a basis for determining the ways that morphogenic mechanisms and anatomical characters diversified as the family evolved. ThesePereskia features may be relictual in the family: epidermis predominantly unistratose and lacking crystals; hypodermis absent or of about three layers of weakly collenchymatous cells with druses; cortex thin and predominantly parenchyma with druses and mucilage cells but lacking cortical bundles; secondary phloem without early differentiation of sclerenchyma but with secondary sclereids developing later, either idioblastically or in clusters; ergastic substances lacking from old secondary phloem; wood with a matrix of libriform fibers (mostly septate and nucleate), scanty paratracheal parenchyma, vessels solitary or in small clusters, perforations simple, pitting circular, oval or very broad; wide-band tracheids absent; ray cells slightly thick-walled, lignified, upright, isodiametric or procumbent; all primary rays narrow; pith without medullary bundles; leaves lacking hypodermis, with only weak development of palisade mesophyll; veins of four orders, strongly distinct in size, none with fibers; vessels in leaves narrower than those in stems.  相似文献   

19.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

20.
The very different evolutionary pathways of conifers and angiosperms are very informative precisely because their wood anatomy is so different. New information from anatomy, comparative wood physiology, and comparative ultrastructure can be combined to provide evidence for the role of axial and ray parenchyma in the two groups. Gnetales, which are essentially conifers with vessels, have evolved parallel to angiosperms and show us the value of multiseriate rays and axial parenchyma in a vessel-bearing wood. Gnetales also force us to re-examine optimum anatomical solutions to conduction in vesselless gymnosperms. Axial parenchyma in vessel-bearing woods has diversified to take prominent roles in storage of water and carbohydrates as well as maintenance of conduction in vessels. Axial parenchyma, along with other modifications, has superseded scalariform perforation plates as a safety mechanism and permitted angiosperms to succeed in more seasonal habitats. This diversification has required connection to rays, which have concomitantly become larger and more diverse, acting as pathways for photosynthate passage and storage. Modes of growth such as rapid flushing, vernal leafing-out, drought deciduousness and support of large leaf surfaces become possible, advantaging angiosperms over conifers in various ways. Prominent tracheid-ray pitting (conifers) and axial parenchyma/ray pitting to vessels (angiosperms) are evidence of release of photosynthates into conductive cells; in angiosperms, this system has permitted vessels to survive hydrologic stresses and function in more seasonal habitats. Flow in ray and axial parenchyma cells, suggested by greater length/width ratios of component cells, is confirmed by pitting on end walls of elongate cells: pits are greater in area, more densely placed, and are often bordered. Bordered pit areas and densities on living cells, like those on tracheids and vessels, represent maximal contact areas between cells while minimizing loss of wall strength. Storage cells in rays can be distinguished from flow cells by size and shape, by fewer and smaller pits and by contents. By lacking secondary walls, the entire surfaces of phloem ray and axial phloem parenchyma become conducting areas across which sugars can be translocated. The intercontinuous network of axial parenchyma and ray parenchyma in woods is confirmed; there are no “isolated” living cells in wood when three-dimensional studies are made. Water storage in living cells is reported anatomically and also in the form of percentile quantitative data which reveal degrees and kinds of succulence in angiosperm woods, and norms for “typically woody” species. The diversity in angiosperm axial and ray parenchyma is presented as a series of probable optimal solutions to diverse types of ecology, growth form, and physiology. The numerous homoplasies in these anatomical modes are seen as the informative results of natural experiments and should be considered as evidence along with experimental evidence. Elliptical shape of rays seems governed by mechanical considerations; unusually long (vertically) rays represent a tradeoff in favor of flexibility versus strength. Protracted juvenilism (paedomorphosis) features redirection of flow from horizontal to vertical by means of rays composed predominantly or wholly of upright cells, and the reasons for this anatomical strategy are sought. Protracted juvenilism, still little appreciated, occurs in a sizeable proportion of the world’s plants and is a major source of angiosperm diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号