首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of the vegetative cells of Nostoc fiagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conventional preparation methods. During the processes of chemical fixation, dehydration and embedding, the cell structures might be more artificially modified than that obtained from high pressure freezing and freeze substitution. With the present method, the sheath of N. fiageUiforme could be well-penetrated and no extra big space could exist between the cell and the sheath. The cell protoplasm rarely shrinked. Some fine structures of cell inclusions and unit membranes became visualized. Many bacteria were harbored in the sheath. In addition, the presence of big vacuoles in the cell of N. fiageUiforme as well as the presence of bacteria in the sheath shown in the present preparation for cyanobacteria has not been described so far in the literature.  相似文献   

2.
采用高压冷冻和低温替代技术对不同时期泌蜜前、泌蜜早期和泌蜜晚期的拟南齐(Arabidopsisthaliana L.)成熟花蜜腺的超微结构进行了研究。着重对小泡运输过程中是否与细胞质膜发生融合以及蜜腺组织中深色细胞与伴胞的区别等问题进行了讨论。拟南芥花中有一对较大的侧蜜腺以及2~4枚中蜜腺。中蜜腺位于2枚长雄蕊基部或它们之间,而侧蜜腺则位于两花瓣之间的短雄蕊附近。泌蜜前和泌蜜期,液泡的大小、高尔基体及内质网的数量、线粒体的分布以及质体内淀粉粒的大小都会发生一定的变化。当高尔基小泡从细胞内运输至细胞外时,并没有发生与细胞质膜融合的过程,与经典的“胞吐”假说不同。深色细胞在泌蜜期大量出现与筛分子旁的伴胞明显不同,前者与蜜腺顶端的气孔器相连,形成“通道”从而使蜜汁从蜜腺排出。  相似文献   

3.
拟南芥花蜜腺筛分子及蜜腺组织发育过程中的细胞学研究   总被引:2,自引:0,他引:2  
应用高压冷冻和低温替代技术,以拟南芥(Arabidopsis thalanaL.)花蜜腺发育过程中细胞的超微结构变化进行了研究。蜜腺组织中深色细胞的超微结构与筛分子早期分化的超微结构十分相似;细胞核中染色质逐渐出现凝集并且边缘化;细胞器分布异常;细胞质浓稠,这些超微结构特征与近年来报道的动植物细胞程序性死亡的超微结构相似,在筛分子和深色细胞分化中,细胞核及一些细胞器的逐渐解体与原蜜汁的运输,加工和蜜汁的分泌有直接联系,这反映了蜜腺发育过程中筛分子和蜜腺组织的细胞学变化是与蜜腺的生长,发育和生理功能的完善联系在一起的。  相似文献   

4.
 In this study, megasporogenesis of the plant model Arabidopsis thaliana was investigated by electron microscopy for the first time. The data described here could constitute a reference for future investigations of Arabidopsis mutants. During the beginning of meiosis the megaspore mother cell shows a polarity created by unequal distribution of organelles in the cytoplasm. Plastids accumulate in the chalazal region and long parallel saccules of endoplasmic reticulum, small vacuoles and some dictyosomes are found in the micropylar region. Plasmodesmata are abundant in the chalazal cell wall. The nucleus is almost centrally localized and contains a prominent excentric nucleolus and numerous typical synaptonemal complexes. After the second division of meiosis the four megaspores are separated by thin cell walls crossed by numerous plasmodesmata and do not show significant cellular organization. The young functional megaspore is characterized by a large nucleus and a large granular nucleolus. The cytoplasm is very electron dense due to the abundance of free ribosomes and contains the following randomly distributed organelles: mitochondria, a few short saccules of endoplasmic reticulum, dictyosomes and undifferentiated plastids. However, there is no apparent polarity, except for the distribution of some small vacuoles which are more abundant in the micropylar region of the cell. The degenerating megaspores are extremely electron dense and do not show any substructure. Received: 30 July 1998 / Revision accepted: 3 February 1999  相似文献   

5.
运用高压冷冻替代方法固定处理材料,在透射电镜下观察了拟南芥(Arabidopsis thaliana L.)根原生韧皮部筛管分子在发育过程中的超微结构变化.结果表明:在筛管分子发育过程中,细胞核具有细胞程序化死亡的典型特征,出现核膜内陷、核质聚集并边缘化、核膜破毁以及最后核消失.核膜在破毁前一直呈饱满状态,未出现核膜皱缩、核裂瓣和核周腔明显膨大等现象.在成熟筛管分子的细胞质内,具单层膜的淀粉状颗粒.这些淀粉状颗粒常与线粒体在一起,可能为线粒体的产能活动提供基质.小液泡发生于内质网,未见大液泡的形成.  相似文献   

6.
7.
拟南芥根原生韧皮部筛管分子的超微结构   总被引:5,自引:0,他引:5  
运用高压冷冻替代方法固定处理材料,在透射电镜下观察了拟南芥(Arabidopsis thaliana L.)根原生韧皮部筛管分子在发育过程中的超微结构变化。结果表明:在筛管分子发育过程中,细胞核具有细胞程序死亡的典型特征,出现核膜内陷、核质聚集并边缘化,核膜破毁以及最后核消失,核膜在破毁前一直呈饱满状态,未出现核膜皱缩,核裂瓣和核周腔明显膨大等现象。在成熟筛管分子的细胞质内,具单层膜的淀粉状颗粒,这些淀粉状态颗粒常与线粒体在一起,可能为线粒体的产能活动提供基质,小液泡发生于内质网,未见大液泡的形成。  相似文献   

8.
9.
Complete structure of the chloroplast genome of Arabidopsis thaliana.   总被引:7,自引:0,他引:7  
The complete nucleotide sequence of the chloroplast genome of Arabidopsis thaliana has been determined. The genome as a circular DNA composed of 154,478 bp containing a pair of inverted repeats of 26,264 bp, which are separated by small and large single copy regions of 17,780 bp and 84,170 bp, respectively. A total of 87 potential protein-coding genes including 8 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acid species were assigned to the genome on the basis of similarity to the chloroplast genes previously reported for other species. The translated amino acid sequences from respective potential protein-coding genes showed 63.9% to 100% sequence similarity to those of the corresponding genes in the chloroplast genome of Nicotiana tabacum, indicating the occurrence of significant diversity in the chloroplast genes between two dicot plants. The sequence data and gene information are available on the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

10.
11.
拟南芥abi5基因编码了一个碱性亮氨酸拉链类转录因子,它在ABA信号转导过程中发挥着关键调控作用。本文以拟南芥为材料,通过RT-PCR扩增、克隆了包含abi5基因编码区的片段。核苷酸序列分析表明,所克隆的基因与NCBI数据库收录的abi5基因(GenBank登录号NM129185.3)有99.0%的一致性;氨基酸序列存在4个残基差异。所克隆的abi5基因被进一步亚克隆至pET-32a表达载体。序列测定核实构建正确的重组质粒(pET32a-ABI5)转化入大肠杆菌BL21 Star(DE3)中诱导表达。表达产物经Ni-NTA亲和层析柱分离纯化、SDS-PAGE分析和质谱鉴定。结果表明,重组abi5基因在大肠杆菌表达的较适宜条件为:异丙基-β-D-硫代半乳糖苷(IPTG)终浓度为0.3 mmol L-1、30℃下诱导4 h,可达到细菌裂解液上清蛋白的29.1%。经Ni-NTA亲和层析柱纯化后的ABI5融合蛋白在SDS-PAGE电泳分析时呈现一条蛋白带。该条带经串联质谱分析证明为重组ABI5融合蛋白。  相似文献   

12.
利用低能氩离子作为诱变源诱变拟南芥种子,选用诱变剂量为1.5×1017ions/cm2,30 keV的能量。在其M2群体中根据有无果荚及其果荚是否异常,筛选出tc243不育突变体。用石蜡切片技术,在光学显微镜下观察拟南芥部分雄性不育材料小孢子发育过程和各时期的花形态特征,分析雄性不育的原因。从花表型上分析导致雄性不育的原因有三个方面:(1)柱头伸长过快;(2)花药生长过慢;(3)花药开裂晚。从小孢子发生的细胞形态学观察表明花粉败育主要发生在小孢子四分体时期,此时绒毡层正常,小部分四分体正常,大部分四分体外面的的胼胝体过早降解释放游离小孢子,此时的绒毡层还没解体不能提供小孢子发育所需要的营养物质,使过早释放的小孢子不能正常发育,导致最后形成大量没有活力的花粉粒。  相似文献   

13.
This study was aimed at the characterization of the major storage proteins in Arabidopsis thaliana. Two major protein fractions, i.e., the fraction Ⅰ and Ⅱ proteins, were isolated from the extract of mature seeds of this plant by molecular seive gel filtration chromatography. Various polyacrylarnide gel electrophoretic techniques were used to study the properties and polypeptide compositions of these two protein fractions. In was shown that during the SDS gel electrophoresis, fraction Ⅰ protein was separated into 6 major bands with the mol. was. of 34, 31, 29, 28 and 19-20 kD, respectively, whereas Fraction Ⅱ protein migrated as 3 low mol. wt. bands (10-12 kD) on the same gel. Non-denaturing native gel electrophoresis revealed that fraction Ⅰ was a neutral protein and Fraction Ⅱ was a positively charged basic protein with an isoelectric point (pI) higher than 8.8. Fraction I protein was further separated into at least 16 polypeptides in isoelectric focusing/SDS two-dimensional gel electrophoresis, i.e. each SDS band contained 3-4 polypeptides with the same mol. wt. but different pis. This suggested a more complex polypeptide composition of this protein. The properties of fraction Ⅰ and Ⅱ proteins were in good accordance with that of the 12s and 1.7s storage globulins in seeds of many other dicotyledonous plants, and therefore had been characterized as the two major seed storage proteins in this species. These two storage globulins were shown to be accumulated within a defined period during the late stage of seed development (12-14 DAF) and became predominant protein components in mature seeds. In the mean time, a few points in relation to the polypeptide composition and subunit molecular configuration of the 12s globulin were noted.  相似文献   

14.
We have determined the genome structure of the centromeric region of Arabidopsis thaliana chromosome 4 by sequence analysis of BAC clones obtained by genome walking, followed by construction of a physical map using DNA of a hypomethylated strain. The total size of the centromeric region, corresponding to the recombinant inbred (RI) markers between mi87 and mi167, was approximately 5.3 megabases (Mb). This value is over 3 Mb longer than that previously estimated by the Arabidopsis Genome Initiative (Nature, 408, 796-815, 2000). Although we could not cover the entire centromeric region by BAC clones because of the presence of highly repetitive sequences in the middle (2.7 Mb), the cloned regions spanning approximately 1 Mb at both sides of the gap were newly sequenced. These results together with the reported sequences in the adjacent regions suggest that the centromeric region is principally composed of a central domain of 2.7 Mb, consisting of mainly 180-bp repeats and Athila elements, and upper and lower flanking regions of 1.55 Mb and 1 Mb, respectively. The flanking regions were predominantly composed of various types of transposable elements, except for the upper end moiety in which a large 5S rDNA array (0.65 Mb) and central domain-like sequence are present. Such an organization is essentially identical to the centromeric region of chromosome 5 reported previously.  相似文献   

15.
Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality.  相似文献   

16.
Adenine phosphoribosyltransferase (APRT; EC 2. 4,2. 7) from Arabidopsis thaliana was purified approximately 3800-fold, to apparent homogeneity. The purification procedure involved subjecting a leaf extract to heat denaturation, (NH4)2SO4 precipitation, Sephadex G-25 salt separation, ultracentrifugation and liquid chromatography on Diethylaminoethyl Sephacel, Phenyl Sepharose CL-4B, Blue Sepharose CL-6B and adenosine 5'-monophosphate-Agarose. The purified APRT was a homodimer of approximately 54 kDa and it had a specific activity of approximately 300 μmol (mg total protein)-1 min-1. Under standard assay conditions, the temperature optimum for APRT activity was 65°C and the pH optimum was temperature dependent. High enzyme activity was dependent upon the presence of divalent cations (Mn2+ or Mg2+). In the presence of MnCl2+ other divalent cations (Mg2+, Ca2+, Ba2+, Hg2+ and Cd2+) inhibited the APRT reaction. Kinetic studies indicated that 5-phosphoribose-1-pyrophosphate (PRPP) caused substrate inhibition whereas adenine did not. The Km for adenine was 4.5±1.5 μ M , the Km for PRPP was 0.29±0.06 m M and the Ki for PRPP was 1.96±0.45 m M . Assays using radiolabelled cytokinins showed that purified APRT can also catalyze the phosphoribosylation of isopentenyladenine and benzyladenine. The Km for benzyladenine was approximately 0.73±0.06 m M  相似文献   

17.
The protein pattern of leaf plasma membranes from Arabidopsis thaliana (L.) Landsberg erecta was analysed in order to detect changes induced by acute short-term ozone treatment. Plasma membranes were isolated 0, 3 and 8 h after the end of a 2 h fumigation of the plants with 500 nmol mol?1 of O3. Proteins extracted from plasma membranes were separated by high-performance two-dimensional polyacrylamide gel electrophoresis. Eight hours after the end of fumigation, one new protein appeared and the amounts of two other proteins increased significantly. The reported study is a first step towards the identification of plasmalemma proteins altered by ozone and to a more detailed characterization of structural changes occurring in the plasma membrane after ozone exposure.  相似文献   

18.
19.
20.
The sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3 were determined by construction of their physical maps on the basis of restriction analysis. As the reported centromeric regions contain large gaps in the middle due to highly repetitive sequences, appropriate probes for Southern hybridization were prepared from the sequences reported for the flanking regions and from the sequences of BAC and YAC clones newly isolated in this work, and restriction analysis was performed using DNA of a hypomethylated strain (ddm1). The sizes of the genetically defined centromeric regions were deduced to be 9 megabases (Mb), 4.2 Mb and 4.1 Mb, respectively (chromosome 1, from markers T22C23-t7 to T3P8-sp6; chromosome 2, from F5J15-sp6 to T15D9; chromosome 3, from T9G9-sp6 to T15M14; G. P. Copenhaver et al. Science, 286, 2468-2479, 1999). By combining the sizes of the centromeric regions previously estimated for chromosomes 4 and 5 and the sequence data reported for the A. thaliana genome, the total genome size of A. thaliana was estimated to be approximately 146.0 Mb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号