首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The petHL of Synechnococcus sp. PCC 7002 encoding FNR domain (FNRD) of FNR was amplified by PCR, and cloned into expressing vector pET-3a. Ovemxpression of petHL was achieved with E. coli BL21 (DE3). The recombinant FNRD was purified to homogeneity by DEAE-Sephadex A-50 and Sephadex G-100 chromatography. N-terminal amino acid sequencing showed that rFNRD was encoded by petHL and initial Met was not posttranslationally removed, rFNRD had the same absorption spectrum, optimal pH and optimal temperature as those of rFNR. rFNRD could catalyze photosynthetic electron transport from PT00 to NADP+ in vitro.  相似文献   

2.
用PCR的方法克隆出了编码蓝细菌Synechococcussp.PCC7002FNR中FNR区的基因petHL,克隆到达载体pET3a上,转化大肠杆菌BL21(DE3)后实现了大量表达。重组FNR区(rFNRD)经DEAESephdexA50离子交换层析及SephadexG100凝胶层析得到大量的电泳均一的rFNRD。N末端氨基酸序列分析表明,表达产物确为petHL所编码。且起始Met翻译后未被除去。rFNRD与rFNR的吸收光谱相同,其黄递酶活性的最适pH和最适温度也相同。rFNRD能在体外催化电子从P700到NADP+的传递  相似文献   

3.
A mutant of Synechocystis PCC 6803, deficient in psaE, assembles photosystem I reaction centers without the PsaE subunit. Under conditions of acceptor-side rate-limited photoreduction assays in vitro (with 15 microM plastocyanin included), using 100 nM ferredoxin:NADP(+) reductase (FNR) and either Synechocystis flavodoxin or spinach ferredoxin, lower rates of NADP(+) photoreduction were measured when PsaE-deficient membranes were used, as compared to the wild type. This effect of the psaE mutation proved to be due to a decrease of the apparent affinity of the photoreduction assay system for the reductase. In the psaE mutant, the relative petH (encoding FNR) expression level was found to be significantly increased, providing a possible explanation for the lack of a phenotype (i.e., a decrease in growth rate) that was expected from the lower rate of linear electron transport in the mutant. A kinetic model was constructed in order to simulate the electron transfer from reduced plastocyanin to NADP(+), and test for possible causes for the observed change in affinity for FNR. The numerical simulations predict that the altered reduction kinetics of ferredoxin, determined for the psaE mutant [Barth, P., et al., (1998) Biochemistry 37, 16233-16241], do not significantly influence the rate of linear electron transport to NADP(+). Rather, a change in the dissociation constant of ferredoxin for FNR does affect the saturation profile for FNR. We therefore propose that the PsaE-dependent transient ternary complex PSI/ferredoxin/FNR is formed during linear electron transport. Using the yeast two-hybrid system, however, no direct interaction could be demonstrated in vivo between FNR and PsaE fusion proteins.  相似文献   

4.
5.
Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants transformed with an antisense version of the FNR gene. To investigate whether accumulation of this flavoprotein over wild-type levels could improve photosynthetic efficiency and growth, we generated transgenic tobacco (Nicotiana tabacum) plants expressing a pea (Pisum sativum) FNR targeted to chloroplasts. The alien product distributed between the thylakoid membranes and the chloroplast stroma. Transformants grown at 150 or 700 micromol quanta m(-2) s(-1) displayed wild-type phenotypes regardless of FNR content. Thylakoids isolated from plants with a 5-fold FNR increase over the wild type displayed only moderate stimulation (approximately 20%) in the rates of electron transport from water to NADP+. In contrast, when donors of photosystem I were used to drive NADP+ photoreduction, the activity was 3- to 4-fold higher than the wild-type controls. Plants expressing various levels of FNR (from 1- to 3.6-fold over the wild type) failed to show significant differences in CO2 assimilation rates when assayed over a range of light intensities and CO2 concentrations. Transgenic lines exhibited enhanced tolerance to photooxidative damage and redox-cycling herbicides that propagate reactive oxygen species. The results suggest that photosynthetic electron transport has several rate-limiting steps, with FNR catalyzing just one of them.  相似文献   

6.
When plants experience an imbalance between the absorption of light energy and the use of that energy to drive metabolism, they are liable to suffer from oxidative stress. Such imbalances arise due to environmental conditions (e.g. heat, chilling or drought), and can result in the production of reactive oxygen species (ROS). Here, we present evidence for a novel protective process - feedback redox regulation via the redox poise of the NADP(H) pool. Photosynthetic electron transport was studied in two transgenic tobacco (Nicotiana tabacum) lines - one having reduced levels of ferredoxin NADP+-reductase (FNR), the enzyme responsible for reducing NADP+, and the other reduced levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the principal consumer of NADPH. Both had a similar degree of inhibition of carbon fixation and impaired electron transport. However, whilst FNR antisense plants were obviously stressed, with extensive bleaching of leaves, GAPDH antisense plants showed no visible signs of stress, beyond having a slowed growth rate. Examination of electron transport in these plants indicated that this difference is due to feedback regulation occurring in the GAPDH but not the FNR antisense plants. We propose that this reflects the occurrence of a previously undescribed regulatory pathway responding to the redox poise of the NADP(H) pool.  相似文献   

7.
Relative to ferredoxin:NADP(+) reductase (FNR) from chloroplasts, the comparable enzyme in cyanobacteria contains an additional 9 kDa domain at its amino-terminus. The domain is homologous to the phycocyanin associated linker polypeptide CpcD of the light harvesting phycobilisome antennae. The phenotypic consequences of the genetic removal of this domain from the petH gene, which encodes FNR, have been studied in Synechocystis PCC 6803. The in frame deletion of 75 residues at the amino-terminus, rendered chloroplast length FNR enzyme with normal functionality in linear photosynthetic electron transfer. Salt shock correlated with increased abundance of petH mRNA in the wild-type and mutant alike. The truncation stopped salt stress-inducible increase of Photosystem I-dependent cyclic electron flow. Both photoacoustic determination of the storage of energy from Photosystem I specific far-red light, and the re-reduction kinetics of P700(+), suggest lack of function of the truncated FNR in the plastoquinone-cytochrome b(6)f complex reductase step of the PS I-dependent cyclic electron transfer chain. Independent gold-immunodecoration studies and analysis of FNR distribution through activity staining after native polyacrylamide gelelectrophoresis showed that association of FNR with the thylakoid membranes of Synechocystis PCC 6803 requires the presence of the extended amino-terminal domain of the enzyme. The truncated DeltapetH gene was also transformed into a NAD(P)H dehydrogenase (NDH1) deficient mutant of Synechocystis PCC 6803 (strain M55) (T. Ogawa, Proc. Natl. Acad. Sci. USA 88 (1991) 4275-4279). Phenotypic characterisation of the double mutant supported our conclusion that both the NAD(P)H dehydrogenase complex and FNR contribute independently to the quinone cytochrome b(6)f reductase step in PS I-dependent cyclic electron transfer. The distribution, binding properties and function of FNR in the model cyanobacterium Synechocystis PCC 6803 will be discussed.  相似文献   

8.
The petH gene, encoding ferredoxin-NADP(+) oxidoreductase (FNR), was isolated from a thermophilic cyanobacterium, Synechococcus elongatus (the same strain as Thermosynechococcus elongatus). The petH gene of S. elongatus was a single copy gene, and the N-terminal region of PetH showed a sequence similarity to the CpcD-phycobilisome linker polypeptide. The amino acid sequence of the catalytic domains of PetH was markedly similar to those from mesophilic cyanobacterial PetH and higher plant FNR. The enzymatically active FNR protein was purified to homogeneity from S. elongatus as three forms corresponding to the 45-kDa form retaining the CpcD-like domain, the 34-kDa form lacking the CpcD-like domain, and the 78-kDa complex with phycocyanin. The FNR in the 78-kDa complex was tolerant to proteolytic cleavage. However, the dissociation of phycocyanin from the 78-kDa complex induced to specific proteolysis between the CpcD-like domain and the FAD-binding domain to give rise to the 34-kDa form of FNR. The enzymatic activity of the 45-kDa form was thermotolerant, but the 45-kDa form readily aggregated under the storage at -30 degrees C. These results suggest that the association with phycocyanin via CpcD-like domain gives remarkable stability to S. elongatus FNR.  相似文献   

9.
Simon Hald 《BBA》2008,1777(5):433-440
When plants experience an imbalance between the absorption of light energy and the use of that energy to drive metabolism, they are liable to suffer from oxidative stress. Such imbalances arise due to environmental conditions (e.g. heat, chilling or drought), and can result in the production of reactive oxygen species (ROS). Here, we present evidence for a novel protective process — feedback redox regulation via the redox poise of the NADP(H) pool. Photosynthetic electron transport was studied in two transgenic tobacco (Nicotiana tabacum) lines — one having reduced levels of ferredoxin NADP+-reductase (FNR), the enzyme responsible for reducing NADP+, and the other reduced levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the principal consumer of NADPH. Both had a similar degree of inhibition of carbon fixation and impaired electron transport. However, whilst FNR antisense plants were obviously stressed, with extensive bleaching of leaves, GAPDH antisense plants showed no visible signs of stress, beyond having a slowed growth rate. Examination of electron transport in these plants indicated that this difference is due to feedback regulation occurring in the GAPDH but not the FNR antisense plants. We propose that this reflects the occurrence of a previously undescribed regulatory pathway responding to the redox poise of the NADP(H) pool.  相似文献   

10.
The ferredoxin:NADP+ oxidoreductase (FNR) is a plant enzyme, catalyzing the last step of photosynthetic linear electron transport, and involved also in cyclic electron transport around photosystem I. In this study we present the first evidence of FNR (isolated from spinach and from wheat) interaction directly with a model membrane without the mediation of any additional protein. The monomolecular layer technique measurements showed a significant increase in surface pressure after the injection of enzyme solution beneath a monolayer consisting of chloroplast lipids: monogalactosyldiacylglycerol or digalactosyldiacylglycerol. An ATR FTIR study revealed also the presence of FNR in a bilayer composed of these lipids. The secondary structure of the protein was significantly impaired by lipids, as with a pH-induced shift. The stabilization of FNR in the presence of lipids leads to an increase in the rate of NADPH-dependent reduction of dibromothymoquinone catalyzed by the enzyme. The biological significance of FNR-membrane interaction is discussed.  相似文献   

11.
Recombinant proteins produced in Escherichia coli hosts may appear within the cells’ cytoplasm in form of insoluble inclusion bodies (IB’s) and/or as dissolved functional protein molecules. If no efficient refolding procedure is available, one is interested in obtaining as much product as possible in its soluble form. Here, we present a process engineering approach to maximizing the soluble target protein fraction. For that purpose, a dynamic process model was developed. Its essential kinetic component, the specific soluble product formation rate, if represented as a function of the specific growth rate and the culture temperature, depicts a clear maximum. Based on the dynamic model, optimal specific growth rate and temperature profiles for the fed-batch fermentation were determined. In the course of the study reported, the mass of desired soluble protein was increased by about 25%. At the same time, the formation of inclusion bodies was essentially avoided. As the optimal cultivation procedure is rather susceptible to distortions, control measures are necessary to guarantee that the real process can be kept on its desired path. This was possible with robust closed loop control. Experimental process validation revealed that, in this way, high dissolved product fractions could be obtained at an excellent batch-to-batch reproducibility.  相似文献   

12.
The exchange of oxygen during NADP+ photoreduction by isolated pea chloroplasts was studied. It was found that NADP+ oxidation is accompanied by oxygen photoreduction preceeding at a high rate. A possibility for calculation of the ration between the pseudocyclic electron transport and the total electron transport based on oxygen exchange in the presence of NaN3 and catalase, was established. It was found that the pseudocyclic transport can make up to 30% or more of total electron transport.  相似文献   

13.
The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyses the production of NADPH in photosynthesis. The three-dimensional structure of FNR presents two distinct domains, one for binding of the FAD prosthetic group and the other for NADP+ binding. In spite of extensive experiments and different crystallographic approaches, many aspects about how the NADP+ substrate binds to FNR and how the hydride ion is transferred from FAD to NADP+ remain unclear. The structure of an FNR:NADP+ complex from Anabaena has been determined by X-ray diffraction analysis of the cocrystallised units to 2.1 A resolution. Structural perturbation of FNR induced by complex formation produces a narrower cavity in which the 2'-phospho-AMP and pyrophosphate portions of the NADP+ are perfectly bound. In addition, the nicotinamide mononucleotide moiety is placed in a new pocket created near the FAD cofactor with the ribose being in a tight conformation. The crystal structure of this FNR:NADP+ complex obtained by cocrystallisation displays NADP+ in an unusual conformation and can be considered as an intermediate state in the process of coenzyme recognition and binding. Structural analysis and comparison with previously reported complexes allow us to postulate a mechanism which would permit efficient hydride transfer to occur. Besides, this structure gives new insights into the postulated formation of the ferredoxin:FNR:NADP+ ternary complex by prediction of new intermolecular interactions, which could only exist after FNR:NADP+ complex formation. Finally, structural comparison with the members of the broad FNR structural family also provides an explanation for the high specificity exhibited by FNR for NADP+/H versus NAD+/H.  相似文献   

14.
Each phycobilisome complex of the cyanobacterium Synechocystis PCC 6803 binds approximately 2.4 copies of ferredoxin:NADP(+) reductase (FNR). A mutant of this strain that carries an N-terminally truncated version of the petH gene, lacking the 9 kDa domain of FNR that is homologous to the phycocyanin-associated linker polypeptide CpcD, assembles phycobilisome complexes that do not contain FNR. Phycobilisome complexes, consisting of the allophycocyanin core and only the core-proximal phycocyanin hexamers from mutant R20, do contain a full complement of FNR. Therefore, the binding site of FNR in the phycobilisomes is not the core-distal binding site that is occupied by CpcD, but in the core-proximal phycocyanin hexamer. Phycobilisome complexes of a mutant expressing a fusion protein of the N-terminal domain of FNR and green fluorescent protein (GFP) contain this fusion protein in tightly bound form. Calculations of the fluorescence resonance energy transfer (FRET) characteristics between GFP and acceptors in the phycobilisome complex indicate that their donor-acceptor distance is between 3 and 7 nm. Fluorescence spectroscopy at 77K and measurements in intact cells of accumulated levels of P700(+) indicate that the presence of FNR in the phycobilisome complexes does not influence the distribution of excitation energy of phycobilisome-absorbed light between photosystem II and photosystem I, and also does not affect the occurrence of 'light-state transitions'.  相似文献   

15.
Ferredoxin-NADP(+) oxidoreductase (FNR) is a ubiquitous flavin adenine dinucleotide (FAD)-binding enzyme encoded by a small nuclear gene family in higher plants. The chloroplast targeted FNR isoforms are known to be responsible for the final step of linear electron flow transferring electrons from ferredoxin to NADP(+), while the putative role of FNR in cyclic electron transfer has been under discussion for decades. FNR has been found from three distinct chloroplast compartments (i) at the thylakoid membrane, (ii) in the soluble stroma, and (iii) at chloroplast inner envelope. Recent in vivo studies have indicated that besides the membrane-bound FNR, also the soluble FNR is photosynthetically active. Two chloroplast proteins, Tic62 and TROL, were recently identified and shown to form high molecular weight protein complexes with FNR at the thylakoid membrane, and thus seem to act as the long-sought molecular anchors of FNR to the thylakoid membrane. Tic62-FNR complexes are not directly involved in photosynthetic reactions, but Tic62 protects FNR from inactivation during the dark periods. TROL-FNR complexes, however, have an impact on the photosynthetic performance of the plants. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

16.
17.
The catalytic mechanism proposed for ferredoxin-NADP(+) reductase (FNR) is initiated by reduction of its flavin adenine dinucleotide (FAD) cofactor by the obligatory one-electron carriers ferredoxin (Fd) or flavodoxin (Fld) in the presence of oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)). The C-terminal tyrosine of FNR, which stacks onto its flavin ring, modulates the enzyme affinity for NADP(+)/H, being removed from this stacking position during turnover to allow productive docking of the nicotinamide and hydride transfer. Due to its location at the substrate-binding site, this residue might also affect electron transfer between FNR and its protein partners. We therefore studied the interactions and electron-transfer properties of FNR proteins mutated at their C-termini. The results obtained with the homologous reductases from pea and Anabaena PCC7119 indicate that interactions with Fd or Fld are hardly affected by replacement of this tyrosine by tryptophan, phenylalanine, or serine. In contrast, electron exchange is impaired in all mutants, especially in the nonconservative substitutions, without major differences between the eukaryotic and the bacterial FNR. Introduction of a serine residue shifts the flavin reduction potential to less negative values, whereas semiquinone stabilization is severely hampered, introducing further constraints to the one-electron-transfer processes. Thus, the C-terminal tyrosine of FNR plays distinct and complementary roles during the catalytic cycle, (i) by lowering the affinity for NADP(+)/H to levels compatible with steady-state turnover, (ii) by contributing to the flavin semiquinone stabilization required for electron splitting, and (iii) by modulating the rates of electron exchange with the protein partners.  相似文献   

18.
The isocitrate dehydrogenase from bass liver was purified to homogeneity by gel filtration, affinity and ion exchange chromatographies. The molecular weight was estimated by gel filtration chromatography to about 120,000. Analysis of the enzyme on sodium dodecyl sulphate polyacrylamide gel electrophoresis showed it to be a dimeric protein. The enzyme showed maximum activity in the pH range between 7.0 and 8.0 while its maximum activity was at pH 7.5. DL-Isocitrate and Mn2+ stabilized the enzyme, while NADP had the opposite effect. The Km for isocitrate was 0.31 mM and the Km for NADP was 36 microM.  相似文献   

19.
20.
In higher plants, [2Fe-2S] ferredoxin (Fd) proteins are the unique electron acceptors from photosystem I (PSI). Fds are soluble, and distribute electrons to many enzymes, including Fd:NADP(H) reductase (FNR), for the photoreduction of NADP(+). In addition to well studied [2Fe-2S] Fd proteins, higher plants also possess genes for significantly different, as yet uncharacterized Fd proteins, with extended C termini (FdCs). Whether these FdC proteins function as photosynthetic electron transfer proteins is not known. We examined whether these proteins play a role as alternative electron acceptors at PSI, using quantitative RT-PCR to follow how their expression changes in response to acceptor limitation at PSI, in mutant Arabidopsis plants lacking 90-95% of photosynthetic [2Fe-2S] Fd. Expression of the gene encoding one FdC protein, FdC1, was identified as being strongly up-regulated. We confirmed that this protein was chloroplast localized and increased in abundance on PSI acceptor limitation. We purified the recombinant FdC1 protein, which exhibited a UV-visible spectrum consistent with a [2Fe-2S] cluster, confirmed by EPR analysis. Measurements of electron transfer show that FdC1 is capable of accepting electrons from PSI, but cannot support photoreduction of NADP(+). Whereas FdC1 was capable of electron transfer with FNR, redox potentiometry showed that it had a more positive redox potential than photosynthetic Fds by around 220 mV. These results indicate that FdC1 electron donation to FNR is prevented because it is thermodynamically unfavorable. Based on our data, we speculate that FdC1 has a specific function in conditions of acceptor limitation at PSI, and channels electrons away from NADP(+) photoreduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号