首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同风沙条件对几种植物生态生理特征的影响   总被引:16,自引:1,他引:16       下载免费PDF全文
 在野外风洞条件下,就不同风况的风沙胁迫对几种固沙植物生态生理特征的影响进行了实验研究。实验采用了沙坡头地区的野外植物和盆栽植物。在不同风速(5.9 m·s-1, 7.9 m·s-1, 9.9 m·s-1,14 m·s-1, 10 m·s-1,15 m·s-1, 20 m·s-1)和吹袭时间间隔(2 d, 4 d, 9 d)下测定了植物3个生理生态参数的变化。实验结果表明:1)净风和风沙流胁迫均可使植物的净光合速率(Pn)降低,蒸腾速率(E)升高,从而导致水分利用效率(WUE)下降。净风和风沙流对植物生理生态特征的影响显著不同。同样为14 m·s-1的风速时,风沙流使植物的Pn降低40.7%,而净风使其降低了35.88%。2)吹袭的时间间隔越短,植物的净光合速率降幅越大;风沙流比净风的影响更大。在2 d, 4 d, 9 d为间隔的风沙流吹袭下,油蒿(Artemisia ordosica)的Pn分别下降了20.13%、 11.76%、 7.72%。风沙胁迫强度越大,物质积累越少,植物的高生长越慢。3)由于风沙流降低了水分利用率,从而增加了对植物的干燥作用。从总体来看,沙生植物对风沙流胁迫有一定的适应响应,实验所用灌木较草本植物有更强的抗风性。  相似文献   

2.
Boyer JS 《Plant physiology》1970,46(2):236-239
Rates of net photosynthesis were studied in soil-grown corn (Zea mays) and soybean (Glycine max) plants having various leaf water potentials. Soybean was unaffected by desiccation until leaf water potentials were below −11 bars. Rates of photosynthesis in corn were inhibited whenever leaf water potentials dropped below −3.5 bars.  相似文献   

3.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was characterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then declined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dissipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than −21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon rewatering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation.  相似文献   

4.
阿拉善雅布赖风沙区荒漠植物群落结构和物种多样性研究   总被引:4,自引:0,他引:4  
根据阿拉善雅布赖风沙区30个样地的调查资料,对该区荒漠植物群落物种多样性进行分析.结果表明:雅布赖风沙区天然植被物种组成简单,以旱生、盐生或超旱生的小灌木和多年生草本植物占主导地位,体现出荒漠半荒漠和草原化荒漠植物群落的特点.群落优势层片为灌木层,其物种组成以矮化的半灌木和小灌木为主(占41%~90%),受环境变化的影响较小,结构比较稳定;草本层片组成中以多年生草本为主,但一年生草本的数量却占到81.5%~98.8%,为不稳定层片.雅布赖风沙区荒漠植物群落多样性数量特征值差异较大,在植被生态建设时应关注不同生活型植被的防护效应与当地大风和沙尘暴在发生时间上的匹配性,针对半灌木、小灌木和多年生草本覆盖特有的防风性能,重视灌木和多年生草本的恢复与建设,以取得抵抗风沙、稳定当地生态环境的效果.  相似文献   

5.
Photosynthetic responses of intact leaves of the desert shrub Encelia farinosa were measured during a long term drought cycle in order to understand the responses of stomatal and nonstomatal components to water stress. Photosynthetic rate at high irradiance and leaf conductance to water vapor both decreased linearly with declining leaf water potential. The intercellular CO2 concentration (ci) remained fairly constant as a function of leaf water potential in plants subjected to a slow drought cycle of 25 days, but decreased in plants exposed to a 12-day drought cycle. With increasing water stress, the slope of the dependence of photosynthesis on ci (carboxylation efficiency) decreased, the maximum photosynthetic rates at high ci became saturated at lower values, and water use efficiency increased. Both the carboxylation efficiency and photosynthetic rates were positively correlated with leaf nitrogen content. Associated with lower leaf conductances, the calculated stomatal limitation to photosynthesis increased with water stress. However, because of simultaneous changes in the dependence of photosynthesis on ci with water stress, increased leaf conductance alone in water-stressed leaves would not result in an increase in photosynthetic rates to prestressed levels. Both active osmotic adjustment and changes in specific leaf mass occurred during the drought cycle. In response to increased water stress, leaf specific mass increased. However, the increases in specific leaf mass were associated with the production of a reflective pubescence and there were no changes in specific mass of the photosynthetic tissues. The significance of these responses for carbon gain and water loss under arid conditions are discussed.  相似文献   

6.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was characterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then declined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dissipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than −21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon rewatering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation. Supported by the Program of the Research of Vegetation Restoration in Arid Areas of Lanzhou (Grant No. 03-2-27) and the National Natural Science Foundation of China (Grant No. 30270243)  相似文献   

7.
风吹、沙埋对沙地植物幼苗生长和光合蒸腾特性的影响   总被引:6,自引:1,他引:6  
为了掌握风吹、沙埋对沙地植物一些生理生态学特性的影响,2006—2007年在科尔沁沙地对优势固沙植物小叶锦鸡儿进行了风吹和沙埋试验。风吹试验设为对照(不吹风)、软风(2m.s-1)、微风(4m.s-1)、和风(6m.s-1)和劲风(8m.s-1)5个处理;沙埋试验设为对照、轻度、中度、重度和严重沙埋5个处理,沙埋深度分别为株高的0%、33%、66%、100%和133%。结果表明:软风(2m.s-1)的持续风吹可使植物叶片蒸腾速率和净光合速率略有下降,和风(6m.s-1)和劲风(8m.s-1)的持续风吹可促进其蒸腾速率和净光合速率明显增加,而微风(4m.s-1)的持续风吹对植物蒸腾速率和光合速率影响不明显;轻度沙埋可以同时促进植物地上茎叶和地下根系的生长和生物产量的提高,中度沙埋仅可促进其根系生长和生物产量的提高,但对其高生长有一定抑制作用,重度沙埋和严重沙埋可对其生长造成严重威胁,甚至导致死亡;锦鸡儿作为沙地一种优势固沙植物能够通过生长调节和生理调节来适应一定程度的风吹和沙埋,因而对风沙环境具有较强的适应性,但重度或严重风吹、沙埋仍然会导致其严重受损,甚至死亡,因此采用锦鸡儿进行植物固沙时应注意不要将其种植在...  相似文献   

8.
The northern tamarisk beetle (Diorhabda carinulata Desbrochers) was released in several western states as a biocontrol agent to suppress Tamarix spp. L. which has invaded riparian ecosystems; however, effects of beetle herbivory on Tamarix physiology are largely undocumented and may have ecosystem ramifications. Herbivory by this insect produces discoloration of leaves and premature leaf drop in these ecosystems, yet the cause of premature leaf drop and the effects of this leaf drop are still unknown. Insect herbivory may change leaf photosynthesis and respiration and may affect a plant’s ability to regulate water loss and increase water stress. Premature leaf drop may affect plant tissue chemistry and belowground carbon allocation. We conducted a greenhouse experiment to understand how Tamarix responds physiologically to adult beetle and larvae herbivory and to determine the proximate cause of premature leaf drop. We hypothesized that plants experiencing beetle herbivory would have greater leaf and root respiration rates, greater photosynthesis, increased water stress, inefficient leaf nitrogen retranslocation, lower root biomass and lower total non-structural carbohydrates in roots. Insect herbivory reduced photosynthesis rates, minimally affected respiration rates, but significantly increased water loss during daytime and nighttime hours and this produced increased water stress. The proximate cause for premature leaf drop appears to be desiccation. Plants exposed to herbivory were inefficient in their retranslocation of nitrogen before premature leaf drop. Root biomass showed a decreasing trend in plants subjected to herbivory. Stress induced by herbivory may render these trees less competitive in future growing seasons.  相似文献   

9.
樟子松幼苗生长及光合特性对强风沙流吹袭的响应   总被引:1,自引:0,他引:1  
为了解樟子松幼苗对不同时间强风沙流吹袭的生理生态响应,2013年春季在内蒙古科尔沁沙地研究了8级大风风沙流(风速18m·s-1,风沙流强度173g·cm-1·min-1)吹袭10、20和30min下樟子松幼苗生长与光合特性的变化。结果显示:(1)随着风吹时间的增加,樟子松的株高生长量减少、茎粗生长加快,落叶数量增加,其中30min处理与CK相比的株高生长量下降52.63%,茎粗生长量增加233.30%,落叶指数增加466.70%。(2)风沙流吹袭没有改变樟子松幼苗的净光合速率、蒸腾速率、气孔导度和胞间CO2浓度的日变化规律,但日光合峰值下降,日最大蒸腾速率增加;与CK相比,30min处理的日最大光合速率下降22.69%,日最大蒸腾速率增加11.89%。(3)随风吹时间增加,其叶片温度、叶片相对含水量、日均光合速率、水分利用效率下降,30min处理较CK依次下降0.60%、4.37%、28.57%和31.58%,且日均蒸腾速率、气孔导度和胞间CO2浓度增加,30min处理较CK依次增加6.25%、6.67%和12.60%。研究表明,在持续风沙流胁迫下,樟子松幼苗光合作用受到抑制,蒸腾耗水增加,水分利用效率降低;樟子松幼苗生长速率降低主要源于光合面积减少和光合作用受到抑制,而其光合速率下降主要因幼苗叶片叶温和叶片含水量下降所致,蒸腾速率的增加主要源于气孔导度的增加;为了适应风沙流持续吹袭的胁迫,樟子松幼苗采取了降低株高生长速率,加快茎粗生长速率的适应策略。  相似文献   

10.
Questions: What are the water economy strategies of the dominant subarctic bryophytes in terms of colony and shoot traits? Can colony water retention capacity be predicted from morphological traits of both colonies and separate shoots? Are suites of water retention traits consistently related to bryophyte habitat and phylogenetic position? Location: Abisko Research Station, North Sweden. Methods: We screened 22 abundant subarctic bryophyte species from diverse habitats for water economy traits of shoots and colonies, including desiccation rates, water content at field capacity, volume and density (mg cm?3) of water‐saturated and oven‐dried patches, evaporation rate (g·m?2·s?1) and cell wall thickness. The relationships between these traits and shoot and colony desiccation rates were analysed with Spearman rank correlations. Subsequent multivariate (cluster followed by PCA) analyses were based on turf density, turf and shoot desiccation rate, cell wall thickness and amount of external and internal water. Results: Individual shoot properties, i.e. leaf cell wall properties, water retention capacity and desiccation rate, did not correspond with colony water retention capacity. Colony desiccation rate depended on density of water‐saturated colonies, and was marginally significantly negatively correlated with species individual shoot desiccation rate but not related to any other shoot or colony trait. Multivariate analyses based on traits assumed to determine colony desiccation rate revealed six distinct species groups reflecting habitat choice and phylogenetic relationships. Conclusions: General relationships between shoot and colony traits as determinants of water economy will help to predict and upscale changes in hydrological function of bryophyte‐dominated peatlands undergoing climate‐induced shifts in species abundance, and feedbacks of such species shifts on permafrost insulation and carbon sequestration functions.  相似文献   

11.
Z.-Z. Xu  G.-S. Zhou 《Plant and Soil》2005,269(1-2):131-139
Water deficit and high temperature are important environmental factors restricting plant growth and photosynthesis. The two stresses often occur simultaneously, but their interactions on photosynthesis and nitrogen level have been less studied. In the present experiment, we measured photosynthetic parameters, stomatal density, and nitrogen levels, as well as soluble sugar content of leaves of a perennial grass, Leymus chinensis, experiencing two day/night temperature regimes of 30/20 °C and 30/25 °C, and five different soil moisture contents (the soil relative-water content ranged from 80% to 25%). Leaf relative water content, leaf biomass, whole plant biomass, the ratio between the leaf biomass and total plant biomass, and the photosynthetic rate, as well as water-use efficiency decreased at high night temperature, especially under severe water stress conditions. Stomatal index was also increased by soil water stress except very severe water stress, and high nocturnal temperature decreased the leaf stomatal index under soil water stress. Nocturnal warming decreased nitrogen concentration in the leaves and increased it in the roots, particularly when plants were subjected to severe water stress. There were significant positive correlations between the photosynthetic rate and both soluble sugar concentration and nitrogen concentration at low nocturnal temperature. It is suggested that nocturnal warming significantly exacerbates the adverse effects of soil water stress, and their synergistic interactions might reduce the plant productivity and constrain its distribution in the region dominated by L. chinensis, based on predictions of global climate change.  相似文献   

12.
Boyer JS 《Plant physiology》1971,47(6):816-820
Photosynthesis was studied in sunflower plants subjected to 1 to 2 days of desiccation and then permitted to recover. The leaf water potential to which leaves returned after rewatering was dependent on the severity of desiccation and the evaporative conditions. Under moderately evaporative conditions, leaf water potential returned to predesiccation levels after 3 to 5 hours when desiccation was slight. Leaf water potentials remained below predesiccation levels for several days after rewatering when leaf water potentials decreased to −13 to −19 bars during desiccation. Leaf water potential showed no sign of recovery when leaf water potentials decreased to −20 bars or below during desiccation. The lack of full recovery of leaf water potential was attributable to increased resistance to water transport in the roots and stem. The resistance ultimately became large enough to result in death of the leaves because net water loss continued even after the soil had been rewatered.  相似文献   

13.
RENARD  C.; FRANCOIS  J. 《Annals of botany》1985,55(6):869-879
The effects of increasing water stress on water relations, leafconductance, leaf extension and leaf rolling of Festuca arundinaceain sward (I m2) were investigated under wind tunnel conditions.The plants were grown in a container 60 cm deep and the experimentwas conducted over a 36 d period. Upon cessation of watering(day 11), leaf extension and conductance were affected. Within8 d, the onset of leaf rolling helped to reduce transpirationand to maintain leaf water potential. Nocturnal recovery of turgor potential helped in maintainingleaf extension at a moderate level and in the final 5 d waterand osmotic potentials dropped sharply as leaf rolling becamemore acute and leaf extension stopped. The grass combines various morphological and physiological mechanismsto prevent water losses and maintain growth. Festuca arundinacea, tall fescue, wind tunnel, water stress, water potential, osmotic potential, conductance, leaf rolling, leaf extension  相似文献   

14.
风对黄花蒿水力学性状和生长的影响   总被引:1,自引:0,他引:1  
王林  代永欣  樊兴路  张芸香  黄平  万贤崇 《生态学报》2015,35(13):4454-4461
吹风会影响到植物的水力学结构、光合作用、生物量分配以及植物的力学性状,研究风对植物的综合影响有助于深入了解植物应对风胁迫的响应机制。以黄花蒿为研究对象,每天吹风4h,风速为5m/s,吹风处理60d,测定了风吹条件下黄花蒿的水力学特征、光合作用、生物量分配和茎干力学特性。结果表明:在风吹条件下,黄花蒿正午水势显著低于对照,茎干导水损失率(PLC)增加了16%,最大光合速率仅为对照的62%,气孔导度为对照的55%。在试验结束时风吹植株株高仅为对照的68%,但基茎显著高于对照,同时风吹显著降低了黄花蒿的总生物量,但根冠比显著高于对照,风吹显著减小了茎导管直径和导管密度,风吹植物导管直径和导管密度分别为对照的77%和55%,同时,风吹植物茎干导水率显著低于对照,但茎干的抗弯刚度显著高于对照。以上结果表明风吹抑制了植物的水分输导能力,导致叶片水分匮缺,限制了植物的光合作用。风吹增加了茎干的力学稳定性,但同时降低了茎干的水分输导能力,这是植物茎在力学性状和水分输导之间的权衡。这种改变有利于在有风条件下维持植物的力学稳定性,但同时降低了水分输导能力。  相似文献   

15.
Background and Aims Two ecological strategies of desiccation tolerance exist in plants, constitutive and inducible. Because of difficulties in culturing sporophytes, very little is known about desiccation tolerance in this generation and how desiccation affects sexual fitness.Methods Cultured sporophytes and vegetative shoots from a single genotype of the moss Aloina ambigua raised in the laboratory were tested for their strategy of desiccation tolerance by desiccating the shoot–sporophyte complex and vegetative shoots at different intensities, and comparing outcomes with those of undried shoot–sporophyte complexes and vegetative shoots. By using a dehardened clonal line, the effects of field, age and genetic variance among plants were removed.Key Results The gametophyte and embryonic sporophyte were found to employ a predominantly inducible strategy of desiccation tolerance, while the post-embryonic sporophyte was found to employ a moderately constitutive strategy of desiccation tolerance. Further, desiccation reduced sporophyte fitness, as measured by sporophyte mass, seta length and capsule size. However, the effects of desiccation on sporophyte fitness were reduced if the stress occurred during embryonic development as opposed to postembryonic desiccation.Conclusions The effects of desiccation on dehardened sporophytes of a bryophyte are shown for the first time. The transition from one desiccation tolerance strategy to the other in a single structure or generation is shown for only the second time in plants and for the first time in bryophytes. Finding degrees of inducible strategies of desiccation tolerance in different life phases prompts the formulation of a continuum hypothesis of ecological desiccation tolerance in mosses, where desiccation tolerance is not an either/or phenomenon, but varies in degree along a gradient of ecological inducibility.  相似文献   

16.
The degree of leaf pubescence development in the arid land shrub Encelia farinosa Gray is affected by air temperature, leaf water potential, and previous history of the apical meristem during the current growing season. Changes in leaf pubescence levels change leaf spectral characteristics and affect both leaf temperature and photosynthesis. Decreasing leaf water potentials and increasing air temperatures both independently increase pubescence development as measured by decreased leaf absorptances. During any one growing season leaf absorptance may change reversibly coincident with air temperature changes, but with respect to water stress leaf absorptance only decreases as the season progresses. The ecological significance of regulation of the leaf spectral characteristics is discussed.  相似文献   

17.
The moss Fontinalis antipyretica, an aquatic bryophyte previously described as desiccation-intolerant, is known to survive intermittent desiccation events in Mediterranean rivers. To better understand the mechanisms of desiccation tolerance in this species and to reconcile the apparently conflicting evidence between desiccation tolerance classifications and field observations, gross photosynthesis and chlorophyll a fluorescence were measured in field-desiccated bryophyte tips and in bryophyte tips subjected in the laboratory to slow, fast, and very fast drying followed by either a short (30 min) or prolonged (5 days) recovery. Our results show, for the first time, that the metabolic response of F. antipyretica to desiccation, both under field and laboratory conditions, is consistent with a desiccation-tolerance pattern; however, drying must proceed slowly for the bryophyte to regain its pre-desiccation state following rehydration. In addition, the extent of dehydration was found to influence metabolism whereas the drying rate determined the degree of recovery. Photosystem II (PSII) regulation and structural maintenance may be part of the induced desiccation tolerance mechanism allowing this moss to recover from slow drying. The decrease in the photochemical quenching coefficient (qP) immediately following rehydration may serve to alleviate the effects of excess energy on photosystem I (PSI), while low-level non-photochemical quenching (NPQ) would allow an energy shift enabling recovery subsequent to extended periods of desiccation. The findings were confirmed in field-desiccated samples, whose behavior was similar to that of samples slowly dried in the laboratory.  相似文献   

18.
Summary In the Chihuahuan Desert of southern New Mexico, both water and nitrogen limit the primary productivity of Larrea tridentata, a xerophytic evergreen shrub. Net photosynthesis was positively correlated to leaf N, but only in plants that received supplemental water. Nutrient-use efficiency, defined as photosynthetic carbon gain per unit N invested in leaf tissue, declined with increasing leaf N. However, water-use efficiency, defined as the ratio of photosynthesis to transpiration, increased with increasing leaf N, and thus these two measures of resource-use efficiency were inversely correlated. Resorption efficiency was not significantly altered over the nutrient gradient, nor was it affected by irrigation treatments. Leaf longevity decreased significantly with fertilization although the absolute magnitude of this decrease was fairly small, in part due to a large background of insect-induced mortality. Age-specific gas exchange measurements support the hypothesis that leaf aging represents a redistribution of resources, rather than actual deterioration or declining resource-use efficiency.  相似文献   

19.
比较研究了4种不同水分生态型植物在不同水分胁迫下的光合作用、叶片含水量和气孔阻力等生理指标的反应.结果表明,不同水分生态型植物抵御干旱的机制是不同的.中生植物主要是通过增加气孔阻力限制蒸腾失水,而旱生植物则依靠高浓度的细胞原生质减少水分的散失,后者保水效率远高于前者.植物从中生种到旱生种,生理特性亦显示出规律性的种间差异,叶片含水量和气孔阻力水平降低,而单位叶面积的净光合速率增加.  相似文献   

20.
草原地区不同生态类型的植物生理特性的比较研究   总被引:7,自引:3,他引:7  
比较研究了4种不同水分生态型植物在不同水分胁迫下的光合作用、叶片含水量和气孔阻力等生理指标的反应。结果表明,不同水分生态型植物抵御干旱的机制是不同的。中生植物主要是通过增加气孔阻力限制蒸腾失水,而旱生植物则依靠高浓度的细胞原生质减少水分的散失,后者保水效率远高于前者。植物从中生种到旱生种,生理特性亦显示出规律性的种间差异,叶片含水量和气孔阻力水平降低,而单位叶面积的净光合速率增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号