首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从菠菜(Spinacia oleracea Mill.)叶中分离获得H~ -ATP酶(CF_0-CF_1)复合体。将CF_0-CF_1重组于平板脂双层上,在电压钳位下,研究CF_0~CF_1的质子传导性能,观察到:(1)当CF_0-CF_1重组于平板脂双层上后,平板膜电阻由10~20GΩ立即下降到1GΩ左右。(2)溶液中蛋白质(CF_0-CF_1)浓度在2mg/L下可记录到单通道电流的涨落,单位电导约在5~10pS。(3)通道电流随膜两侧ΔpH变化而改变,在ΔpH为2~4时,膜电流随ΔpH增加而增大,在ΔpH为4.5时膜电流呈现回落。(4)质子传导抑制剂Dicyclohexyl-carbodiimide(DCCD)显示出迅速地且不可逆地阻断通道电流。(5)无金属离子的溶液中,跨膜(BLM)的ΔpH为3时,在0~ 150mV钳位下,镁离子比钙离子所引起的CF_0-CF_1的通道电流要大得多。以上结果不仅表明CF_0-CF_1已成功地组装于人工膜上,而且也显示出镁离子直接参与了质子传导过程。  相似文献   

2.
R Wagner  E C Apley    W Hanke 《The EMBO journal》1989,8(10):2827-2834
The purified chloroplast ATP synthase (CF(0)-CF(1)) was reconstituted into azolectin liposomes from which bilayer membranes on the tip of a glass pipette ('dip stick technique')and planar bilayer membranes were form ed. The CF(0)-CF(1) facilitated ion conductance through the bilayer membranes. Our results clearly indicated that the observed single channel currents were carried by H+ through the isolated and reconstituted chloroplast ATPase. We demonstrated that in proteoliposomes it is the whole enzyme complex CF(0)-CF(1) and not the membrane sector CF(0) alone that constitutes a voltagegated, proton-selective channel with a high conductance of 1-5 pS at pH 5.5-8.0. After removal of CF(1) from the liposomes by NaBr treatment the membrane sector CF(0) displayed various kinds of channels also permeable to monovalent cations. The open probability P(0) of the CF(0)-CF(1) channel increased considerable with increasing membrane voltage [from P(0) less than or equal to 1% (V(m) less than or equal to 120 mV) to P(0) less than or equal to 30% (120 mV less than or equal to Vm 200 mV)]. In the presence of ADP (3 microM) and P(i) (5 microM), which specifically bind to CF(1), the open probability decreased and venturicidin (1 microM), a specific inhibitor of H+ flow through CF(0) in thylakoid membranes, blocked the channel almost completely. Our results, which reveal a high channel unit conductance, and at membrane voltages less than 100 mV low open probability with concomitant mean open times in the micros timescale (less than 100 micros) for the energy coupling in the enzyme complex. At physiological membrane voltages for photophosphorylation (about 30 mV) the enzyme complex would then display a time-averaged conductance of about 1 fS.  相似文献   

3.
Chromatographic procedures were developed to purify chloroplast ATP synthase (CF0-CF1) in large amounts and to resolve subunits from this enzyme. The ATP synthase thus obtained has high ATP-Pi exchange and Mg2(+)-ATPase activities upon incorporation into asolectin liposomes. The purity of this preparation was about 95%. By modifications of this chromatographic procedure, we purified subunit IV-deficient CF0-CF1, subunit IV-deficient CF0, and subunit IV. Both ATP-Pi exchange and Mg2(+)-ATPase activities were impaired by depletion of subunit IV from CF0-CF1. Partial restoration of these activities was obtained by reconstituting subunit IV-deficient CF0-CF1 with subunit IV. The impairment of these activities was likely caused by a loss in proton conductivity of CF0 upon removal of subunit IV. The dicyclohexylcarbodiimide-sensitive Mg2(+)-ATPase of subunit IV-deficient CF0-CF1 was not as sensitive to the depletion of subunit IV as ATP-Pi exchange. Nearly 90% of subunit IV could be removed, but Mg2(+)-ATPase activity was inhibited by only 40-60%. Thus subunit IV of CF0-CF1 may not participate directly in proton transfer but may have a role in organizing and/or stabilizing CF0 structure.  相似文献   

4.
The proton-linked ATP synthase (CF1-CF0) of chloroplasts consists of a catalytic component (CF1) and a membrane-embedded part (CF0) that interacts with CF1 and contains a proton channel. The subunits of CF0 which are involved in binding of CF1 were studied by examining the effect of selective depletion of subunits I, II, and IV of CF0 from the chloroplast ATP synthase on the association of the remaining CF0 subunits with CF1. Dissociated CF0 subunits were identified by sucrose density gradient centrifugation. Removal of subunit IV alone from CF0-CF1 did not cause dissociation of the other CF0 subunits from CF1. Upon removal of both subunits I and IV from CF0-CF1, subunit II also dissociated, but subunit III was still bound to CF1. Thus, at least two subunits of CF0, I and III, directly associate with CF1. Subunit II is unlikely to bind CF1 directly and may associate with subunit I. Although depletion of subunit IV does not cause dissociation of CF0 from CF1, its interaction with CF1 subunits is uncertain.  相似文献   

5.
The early observation of light-dependent Ca-ATPase activity in chloroplast thylakoids [Avron, M. (1962) J. Biol. Chem. 237, 2011-2017] has been reinvestigated. It is demonstrated that in contrast to light-triggered Mg-ATP activity, Ca-ATPase activity is strictly dependent on delta microH+, the transthylakoid membrane electrochemical potential gradient, since (a) there is an absolute requirement for continuous illumination; (b) electron-transport mediators that catalyze proton uptake, like phenazinemethosulphate, methylviologen of ferricyanide, are essential and (c) uncouplers inhibit the activity. The Ca-ATPase activity is essentially unaffected by dithiols, but is inhibited by CF0-CF1 inhibitors including tentoxin, dicyclohexylcarbodiimide and antisera to CF1. Addition of Ca-ATP to thylakoids does not induce delta pH or delta psi (the electrical potential gradient) formation either in the light or following preillumination with dithiols, demonstrating that it is not coupled to proton translocation. It is also demonstrated that Ca-ATP or Ca-ADP does not induce a proton leak through CF0-CF1. It is concluded that the Ca-ATPase activity in chloroplast thylakoid reflects a partial reaction of ATP synthesis catalyzed by CF0-CF1, which is internally uncoupled from proton translocation but is dependent on energization by a transmembrane delta microH+.  相似文献   

6.
The ATP synthases in photophosphorylation and respiration are of the F-type with a membrane-bound proton channel, F0, and an extrinsic catalytic portion, F1. The properties of one particular subunit, delta (in chloroplasts and Escherichia coli) and OSCP (in mitochondria), are reviewed and the role of this subunit at the interface between F0 and F1 is discussed. Delta and OSCP from the three sources have in common the molecular mass (approximately 20 kDa), an elongated shape (axial ratio in solution about 3:1), one high-affinity binding site to F1 (Kd approximately 100 nM) plus probably one or two further low-affinity sites. When isolated delta is added to CF1-depleted thylakoid membranes, it can block proton flow through exposed CF0 channels, as do CF1 or CF1(-delta)+ delta. This identifies delta as part of the proton conductor or, alternatively, conformational energy transducer between F0 (proton flow) and F1 (ATP). Hybrid constructs as CF1(-delta)+ E. coli delta and EF1(-delta)+ chloroplast delta diminish proton flow through CF0.CF1(-delta) + E. coli delta does the same on EF0. Impairment of proton leaks either through CF0 or through EF0 causes "structural reconstitution' of ATP synthesis by remaining intact F0F1. Functional reconstitution (ATP synthesis by fully reconstructed F0F1), however, is absolutely dependent on the presence of subunit delta and is therefore observed only with CF1 or CF1(-delta) + chloroplast delta on CF0 and EF1 or EF1(-delta) + E. coli delta on EF0. The effect of hybrid constructs on F0 channels is surprising in view of the limited sequence homology between chloroplast and E. coli delta (36% conserved residues including conservative replacements). An analysis of the distribution of the conserved residues at present does not allow us to discriminate between the postulated conformational or proton-conductive roles of subunit delta.  相似文献   

7.
A chloroplast ATP synthase complex (CF1 [chloroplast-coupling factor 1]-CF0 [membrane-spanning portion of chloroplast ATP synthase]) depleted of all CF0 subunits except subunit III (also known as the proteolipid subunit) was purified to study the interaction between CF1 and subunit III. Subunit III has a putative role in proton translocation across the thylakoid membrane during photophosphorylation; therefore, an accurate model of subunit inter-actions involving subunit III will be valuable for elucidating the mechanism and regulation of energy coupling. Purification of the complex from a crude CF1-CF0 preparation from spinach (Spinacia oleracea) thylakoids was accomplished by detergent treatment during anion-exchange chromatography. Subunit III in the complex was positively identified by amino acid analysis and N-terminal sequencing. The association of subunit III with CF1 was verified by linear sucrose gradient centrifugation, immunoprecipitation, and incorporation of the complex into asolectin liposomes. After incorporation into liposomes, CF1 was removed from the CF1-III complex by ethylenediaminetetracetate treatment. The subunit III-proteoliposomes were competent to rebind purified CF1. These results indicate that subunit III directly interacts with CF1 in spinach thylakoids.  相似文献   

8.
The rate of photosynthetic electron transport measured in the absence of ADP and Pi is stimulated by low levels of Hg2+ or Ag+ (50% stimulation approximately or equal to 3 Hg2+ or 6 Ag+/100 chlorophyll) to a plateau equal to the transport rate under normal phosphorylating conditions (i.e. +ADP, +Pi). Chloroplasts pretreated in the light under energizing conditions with N-ethylmaleimide show a similar stimulation of non-phosphorylating electron transport. The stimulations of non-phosphorylating electron transport by Hg2+, Ag+ and N-ethylmaleimide are reversed by the CF1 inhibitor phlorizin, the CF0 inhibitor triphenyltin chloride, and can be further stimulated by uncouplers such as methylamine. The Hg2+ and N-ethylmalemide stimulations, but not the Ag+ stimulation, are completely reversed by low levels of ADP (2 microM), ATP (2 microM), AND Pi (400 microM). Ag+, which is a potent inhibitor of ATP synthesis, has little or no effect upon phosphorylating electron transport (+ADP, +Pi). Concomitant with the stimulations of non-phosphorylating electron transport by Hg2+, Ag+ and ADP + Pi, there is a decrease in the level of membrane energization (as measured by atebrin fluorescence quenching) which is reversed when the CF0 channel is blocked by triphenyltin. These results suggest that modification of critical CF1 sulfhydryl residues by Hg2+, Ag+ or N-ethylmalemide leads to the loss of intra-enzyme coupling between the transmembrane proton-transferring and the ATP synthesis activities of the CF0-CF1 ATP synthase complex.  相似文献   

9.
After the incorporation of the tracheal microsomal membrane into bilayer lipid membrane (BLM), a new single channel permeable for calcium was observed. Using the BLM conditions, 53 mM Ca2+ in trans solution versus 200 nM Ca2+ in cis solution, the single calcium channel current at 0 mV was 1.4-2.1 pA and conductance was 62-75 pS. The channel Ca2+/K+ permeability ratio was 4.8. The open probability (P-open) was in the range of 0.7-0.97. The P-open, measured at -10 mV to +30 mV (trans-cis), was not voltage dependent. The channel was neither inhibited by 10-20 microM ruthenium red, a specific blocker of ryanodine calcium release channel, nor by 10-50 microM heparin, a specific blocker of IP3 receptor calcium release channel, and its activity was not influenced by addition of 0.1 mM MgATP. We suggest that the observed new channel is permeable for calcium, and it is neither identical with the known type 1 or 2 ryanodine calcium release channel, nor type 1 or 2 IP3 receptor calcium release channel.  相似文献   

10.
The net synthesis of ATP in dark anaerobic cells of Anacystis nidulans subjected to acid jumps and/or valinomycin pulses was characterized thermodynamically and kinetically. Maximum initial rates of 75 nmol ATP/min per mg dry weight at an applied proton motive force of -350 mV were obtained, the flow-force relationship (rate of ATP synthesis vs applied proton motive force) being linear between -240 and -320 mV irrespective of the source of the proton motive force. The pulse-induced ATP synthesis was inhibited by uncouplers (H+ ionophores) and F0F1-ATPase inhibitors but not by KCN or CO. In order to obtain maximum rates of pulse-induced ATP synthesis both a favorable stationary delta psi (-100 mV at pHo 9, preceding the acid jumps) and a favorable stationary delta pH (+2 units at pHo 4.1, preceding the valinomycin pulse) of the plasma membrane were obligatory, the effects of delta psi and delta pH being strictly additive. Moreover, the pulse-induced ATP synthesis required a minimum total proton motive force of -200 to -250 mV across the plasma membrane; it also required low preexisting phosphorylation potentials corresponding to -400 mV in dark anaerobic, i.e., energy-depleted, cells. The results are discussed in terms of both a reversible H+-ATPase and a respiratory electron transport system occurring in the plasma membrane of intact Anacystis nidulans.  相似文献   

11.
A complex between chloroplast-coupling factor 1 (CF1) and subunit III of the membrane-spanning portion of the chloroplast ATP synthase (CF0), isolated as described in the accompanying paper (C.M. Wetzel and R.E. McCarty [1993] Plant Physiol 102: 241-249), has been further characterized. A comparison of the ATPase activities of CF1, CF1-subunit III, and the chloroplast ATP synthase (CF1-CF0) holoenzyme revealed that the properties of CF1-subunit III more closely resemble those of CF1-CF0 than those of CF1. In particular, the Ca2+-ATPase activity after reduction of the enzyme with dithiothreitol was much lower in CF1-subunit III and CF1-CF0 than in CF1, suggesting that the association of the inhibitory [epsilon] subunit is tightened by the presence of either CF0 or subunit III. Cold stability is a property of CF1-CF0 in thylakoid membranes. The ATPase activity of CF1 incubated in the cold in the presence of asolectin liposomes was lost more rapidly than that of either CF1-subunit III or CF1-CF0 incorporated into liposomes. Removal of the [epsilon] subunit from all three preparations resulted in marked stimulation of their ATPase activity. Although subunit III was also removed during depletion of the [epsilon] subunit, it is not known whether the two subunits interact directly. CF1 deficient in the [epsilon] subunit binds to liposomes containing either subunit III or CF0. Taken together, these results provide evidence that the association of CF1 and subunit III of CFo is specific and may play a role in enzyme regulation.  相似文献   

12.
The energy-transducing mechanism of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius DSM 639 has been studied, addressing the question whether chemiosmotic proton gradients serve as an intermediate energy store driving an F0F1-analogous ATP synthase. At pH 3.5, respiring S. acidocaldarius cells developed an electrochemical potential of H+ ions, consisting mainly of a proton gradient and a small inside-negative membrane potential. The steady-state proton motive force of 140 to 160 mV was collapsed by protonophores, while N,N'-dicyclohexylcarbodiimide (DCCD) caused a hyperpolarization of the membrane, as expected for a reagent commonly used to inhibit the flux through proton channels of F0F1-type ATP synthases. Cellular ATP content was strongly related to the proton motive force generated by respiration and declined rapidly, either by uncoupling or by action of DCCD, which in turn induced a marked respiratory control effect. This observation strongly supports the operation of chemiosmotic ATP synthesis with H+ as the coupling ion. The inhibition of ATP synthesis by [14C]DCCD was correlated with covalent reactions with membrane proteins. The extraction of labeled membranes with organic solvents specifically yielded a readily aggregating proteolipid of 6 to 7 kilodaltons apparent molecular mass. Its amino acid composition revealed significant similarity to the proteolipid found in eubacteria, such as Escherichia coli, as an extremely hydrophobic constituent of the F0 proton channel. Moreover, the N-terminal amino acid sequence of the Sulfolobus proteolipid displays a high degree of homology to eubacterial sequences, as well as to one derived from nucleic acid sequencing of another Sulfolobus strain (K. Denda, J. Konishi, T. Oshima, T. Date, and M. Yoshida, J. Biol. Chem. 264:7119-7121, 1989). Despite certain structural similarities between eucaryotic vacuolar ATPases and the F1-analogous ATPase from Sulfolobus sp. described earlier, the results reported here promote the view that the archaebacterial ATP-synthesizing complex functionally belongs to the F0F1 class of ATPases. These may be considered as phylogenetically conserved catalysts of energy transduction present in all kingdoms of organisms.  相似文献   

13.
The transport activity of the red beet (Beta vulgaris L.) plasma membrane H+-ATPase was examined following reconstitution into a planar bilayer membrane. Fusion of partially purified plasma membrane H+-ATPase with the bilayer membrane was accomplished by perfusion of proteoliposomes against the bilayer under hypoosmotic conditions. Following incorporation into the bilayer, an ATP-dependent current was measured that demonstrated properties consistent with those of the plasma membrane H+-ATPase. Current production was substrate specific for ATP, inhibited by orthovanadate, and insensitive to 200 nM erythrosin B but inhibited by 100 [mu]M erythrosin B. When current production was measured as a function of Mg:ATP concentration, a simple Michaelis-Menten relationship was observed and a Km of 0.62 mM was estimated. Current-voltage analysis of ATP-dependent current in the presence of 0.5 mM ATP, 20 mM ADP, 40 mM orthophosphate, and an opposing 2.5-unit [delta]pH revealed a reversal potential of about -149 mV. Based on the free energy available from ATP hydrolysis, this reversal potential is consistent with an H+/ATP stoichiometry of 1. This study demonstrates the usefulness of a planar bilayer system for investigation of energy coupling to H+ transport by the plasma membrane H+-ATPase.  相似文献   

14.
F0F1 ATP synthases synthesize ATP in their F1 portion at the expense of free energy supplied by proton flow which enters the enzyme through their channel portion F0. The smaller subunits of F1, especially subunit delta, may act as energy transducers between these rather distant functional units. We have previously shown that chloroplast delta, when added to thylakoids partially depleted of the coupling factor CF1, can reconstitute photophosphorylation by inhibiting proton leakage through exposed coupling factor CF0. In view of controversies in the literature, we reinvestigated two further aspects related to subunit delta, namely (a) its stoichiometry in CF0CF1 and (b) whether or not delta is required for photophosphorylation. By rocket immunoelectrophoresis of thylakoid membranes and calibration against purified delta, we confirmed a stoichiometry of one delta per CF0CF1. In CF1-depleted thylakoids photophosphorylation could be reconstituted not only by adding CF1 and subunit delta but, surprisingly, also by CF1 (-delta). We found that the latter was attributable to a contamination of CF1 (-delta) preparations with integral CF1. To lesser extent CF1 (-delta) acted by complementary rebinding to CF0 channels that were closed because they contained delta [CF0(+delta)]. This added catalytic capacity to proton-tight thylakoid vesicles. The ability of subunit delta to control proton flow through CF0 and the absolute requirement for delta in restoration of photophosphorylation suggest an essential role of this small subunit at the interface between the large portions of ATP synthase: delta may be part of the coupling site between electrochemical, conformational and chemical events in this enzyme.  相似文献   

15.
Single channel properties of P2X2 purinoceptors   总被引:6,自引:0,他引:6       下载免费PDF全文
The single channel properties of cloned P2X2 purinoceptors expressed in human embryonic kidney (HEK) 293 cells and Xenopus oocytes were studied in outside-out patches. The mean single channel current-voltage relationship exhibited inward rectification in symmetric solutions with a chord conductance of approximately 30 pS at -100 mV in 145 mM NaCl. The channel open state exhibited fast flickering with significant power beyond 10 kHz. Conformational changes, not ionic blockade, appeared responsible for the flickering. The equilibrium constant of Na+ binding in the pore was approximately 150 mM at 0 mV and voltage dependent. The binding site appeared to be approximately 0.2 of the electrical distance from the extracellular surface. The mean channel current and the excess noise had the selectivity: K+ > Rb+ > Cs+ > Na+ > Li+. ATP increased the probability of being open (Po) to a maximum of 0.6 with an EC50 of 11.2 microM and a Hill coefficient of 2.3. Lowering extracellular pH enhanced the apparent affinity of the channel for ATP with a pKa of approximately 7.9, but did not cause a proton block of the open channel. High pH slowed the rise time to steps of ATP without affecting the fall time. The mean single channel amplitude was independent of pH, but the excess noise increased with decreasing pH. Kinetic analysis showed that ATP shortened the mean closed time but did not affect the mean open time. Maximum likelihood kinetic fitting of idealized single channel currents at different ATP concentrations produced a model with four sequential closed states (three binding steps) branching to two open states that converged on a final closed state. The ATP association rates increased with the sequential binding of ATP showing that the binding sites are not independent, but positively cooperative. Partially liganded channels do not appear to open. The predicted Po vs. ATP concentration closely matches the single channel current dose-response curve.  相似文献   

16.
Recent crosslinking studies indicated the localization of the coupling ion binding site in the Na+-translocating F1F0 ATP synthase of Ilyobacter tartaricus within the hydrophobic part of the bilayer. Similarly, a membrane embedded H+-binding site is accepted for the H+-translocating F1F0 ATP synthase of Escherichia coli. For a more definite analysis, we performed parallax analysis of fluorescence quenching with ATP synthases from both I. tartaricus and E. coli. Both ATP synthases were specifically labelled at their c subunit sites with N-cyclohexyl-N'-(1-pyrenyl)carbodiimide, a fluorescent analogue of dicyclohexylcarbodiimide and the enzymes were reconstituted into proteoliposomes. Using either soluble quenchers or spinlabelled phospholipids, we observed a deeply membrane embedded binding site, which was quantitatively determined for I. tartaricus and E. coli to be 1.3 +/- 2.4 A and 1.8 +/- 2.8 A from the bilayer center apart, respectively. These data show a conserved topology among enzymes of different species. We further demonstrated the direct accessibility for Na+ ions to the binding sites in the reconstituted I. tartaricus c11 oligomer in the absence of any other subunits, pointing to intrinsic rotor channels. The common membrane embedded location of the binding site of ATP synthases suggest a common mechanism for ion transfer across the membrane.  相似文献   

17.
According to alternative hypotheses, mitochondrial uncoupling protein 1 (UCP1) is either a proton channel ("buffering model") or a fatty acid anion carrier ("fatty acid cycling"). Transport across the proton channel along a chain of hydrogen bonds (Grotthus mechanism) may include fatty acid carboxyl groups or occur in the absence of fatty acids. In this work, we demonstrate that planar bilayers reconstituted with UCP1 exhibit an increase in membrane conductivity exclusively in the presence of fatty acids. Hence, we can exclude the hypothesis considering a preexisting H+ channel in UCP1, which does not require fatty acid for function. The augmented conductivity is nearly completely blocked by ATP. Direct application of transmembrane voltage and precise current measurements allowed determination of ATP-sensitive conductances at 0 and 150 mV as 11.5 and 54.3 pS, respectively, by reconstituting nearly 3 x 10(5) copies of UCP1. The proton conductivity measurements carried out in presence of a pH gradient (0.4 units) allowed estimation of proton turnover numbers per UCP1 molecule. The observed transport rate of 14 s-1 is compatible both with carrier and channel nature of UCP1.  相似文献   

18.
Acid secretion and proton conductive pathways across primary human airway surface epithelial cultures were investigated with the pH stat method in Ussing chambers and by single cell patch clamping. Cultures showed a basal proton secretion of 0.17 +/- 0.04 micromol.h(-1).cm(-2), and mucosal pH equilibrated at 6.85 +/- 0.26. Addition of histamine or ATP to the mucosal medium increased proton secretion by 0.27 +/- 0.09 and 0.24 +/- 0.09 micromol.h(-1).cm(-2), respectively. Addition of mast cells to the mucosal medium of airway cultures similarly activated proton secretion. Stimulated proton secretion was similar in cultures bathed mucosally with either NaCl Ringer or ion-free mannitol solutions. Proton secretion was potently blocked by mucosal ZnCl(2) and was unaffected by mucosal bafilomycin A(1), Sch-28080, or ouabain. Mucosal amiloride blocked proton secretion in tissues that showed large amiloride-sensitive potentials. Proton secretion was sensitive to the application of transepithelial current and showed outward rectification. In whole cell patch-clamp recordings a strongly outward-rectifying, zinc-sensitive, depolarization-activated proton conductance was identified with an average chord conductance of 9.2 +/- 3.8 pS/pF (at 0 mV and a pH 5.3-to-pH 7.3 gradient). We suggest that inflammatory processes activate proton secretion by the airway epithelium and acidify the airway surface liquid.  相似文献   

19.
The effect of 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-diphosphate (TNP-ADP) on photophosphorylation and on the proton conductivity of the thylakoid membrane has been investigated. The results show that TNP-ADP is a potent competitive inhibitor of photophosphorylation (Ki = 1-2 microM). Moreover, in the absence of ADP and Pi, TNP-ADP accelerates basal electron transport of chloroplasts. Addition of ADP, which promotes release of the analogue from CF1, completely reverses this effect of TNP-ADP; likewise Pi alone reverses stimulation of electron transport by TNP-ADP. Dicyclohexylcarbodiimide treatment, which is known to close CF0 to H+, completely abolishes the effect of TNP-ADP. The measurements of the alkalization of the medium and the acidification of the thylakoid lumen following single turnover flashes showed that binding of TNP-ADP to CF1 increased membrane permeability for H+. Further results suggest that binding of TNP-ADP to the catalytic site of CF1 opens the CF0-CF1 complex for H+. Since ADP, as well as Pi alone, reverses the effect, it is concluded that TNP-ADP induces a conformation of the CF0-CF1 complex similar to the one triggered by simultaneous binding of ADP plus Pi. This may be achieved by interaction of the TNP residue with the Pi binding site. Thus it seems that the status of the catalytic site(s) in CF1 can be transmitted to the CF0 part to control proton flux through the ATPase complex in an economically reasonable way.  相似文献   

20.
A purified (Na+ + K+)-ATPase large subunit obtained from microsomes by water-alcohol extraction was incorporated into a bilayer lipid membrane. The protein formed in the membrane conductance channels which were sensitive to ouabain and selective for monovalent cations. ATP activated these channels in the presence of sodium and potassium ions. When sodium ions were eliminated ATP did not change the conductance of the modified membrane whereas p-nitrophenyl phosphate increased it. The (Na+ + K+)-ATPase large subunit incorporated into bilayer lipid membrane possessed an ATPase activity. The presence of a potential on the membrane was a necessary condition for the enzyme incorporated into a bilayer lipid membrane to show high ATPase activity. Increasing the potential above 100 mV resulted in the closing of conductance channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号