首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高等植物中的蛋白磷酸酶与信号传递途径   总被引:3,自引:0,他引:3  
栾升 《Acta Botanica Sinica》1998,40(10):883-889
蛋白激酶与蛋白磷酸酶在细胞信号传递中起着重要作用。有关高等植物中蛋白激酶的研究工作已经较多,但关于蛋白磷酸酶的研究在以前却未受到足够的重视。本文主要介绍最近有关蛋白磷酸酶在高等植物的信号传递中有重要作用的研究工作。这些与蛋白磷酸酶有关的信号传递途径包括气孔运动调节与脱落酸的信号转导、植物对病原及逆境的响应以及植物发育的调控。这些研究工作清楚地证明,蛋白磷酸酶的功能不仅表现为蛋白激酶功能的逆向平衡机制,而且在许多信号传递过程中蛋白磷酸酶起着主导作用。  相似文献   

2.
Obesity is a worldwide epidemic as well as being a major risk factor for diabetes, cardiovascular diseases and several types of cancers. Obesity is mainly due to the overgrowth of adipose tissue arising from an imbalance between energy intake and energy expenditure. Adipose tissue, primarily composed of adipocytes, plays a key role in maintaining whole body energy homeostasis. In view of the treatment of obesity and obesity-related diseases, it is critical to understand the detailed signal transduction mechanisms of adipogenic differentiation. Adipogenic differentiation is tightly regulated by many key signal cascades, including insulin signaling. These signal cascades generally transfer or amplify the signal by using serial tyrosine phosphorylations. Thus, protein tyrosine kinases and protein tyrosine phosphatases are closely related to adipogenic differentiation. Compared to protein tyrosine kinases, protein tyrosine phosphatases have received little attention in adipogenic differentiation. This review aims to highlight the involvement of protein tyrosine phosphatases in adipogenic differentiation and the possibility of protein tyrosine phosphatases as drugs to target obesity. [BMB Reports 2012; 45(12): 700-706]  相似文献   

3.
4.
Reversible protein phosphorylation catalyzed by kinases and phosphatases is a major form of posttranslational regulation that plays a central role in regulating many signaling pathways. While large families of both protein kinases and protein phosphatases have been identified in plants, kinases outnumber phosphatases. This raises the question of how a relatively limited number of protein phosphatases can maintain protein phosphorylation homeostasis in a cell. Recent studies have shown that Arabidopsis FyPP1 (Phytochrome-associated serine/threonine protein phosphatase 1) and FyPP3 encode the catalytic subunits of protein phosphatase 6 (PP6), and that they directly binds to the A subunits of protein phosphatase 2A (PP2AA proteins), and SAL (SAPS domain-like) proteins to form the heterotrimeric PP6 holoenzyme complex. Emerging evidence is suggesting that PP6, acts in opposition with multiple classes of kinases, to regulate the phosphorylation status of diverse substrates and subsequently numerous developmental processes and responses to environmental stimuli.  相似文献   

5.
6.
7.
Dual-specificity protein phosphatases participate in signal transduction pathways inactivating mitogen-activated protein kinases (MAP kinases). These signaling pathways are of critical importance in the regulation of numerous biological processes, including cell proliferation, differentiation and development. The social ameba Dictyostelium discoideum harbors 14 genes coding for proteins containing regions very similar to the dual-specificity protein phosphatase domain. One of these genes, mkpB, additionally codes for a region similar to the Rhodanase domain, characteristic of animal MAP kinase-phosphatases, in its N-terminal region. Cells that over-express this gene show increased protein phosphatase activity. mkpB is expressed in D. discoideum ameba at growth but it is greatly induced at 12h of multicellular development. Although it is expressed in all the cells of developmental structures, mkpB mRNA is enriched in cells with a distribution typical of anterior-like cells. Cells that express a catalytically inactive mutant of MkpB grow and aggregate like wild-type cells but show a greatly impaired post-aggregative development. In addition, the expression of cell-type specific genes is very delayed, indicating that this protein plays an important role in cell differentiation and development. Cells expressing the MkpB catalytically inactive mutant show increased sensitivity to cisplatin, while cells over-expressing wild type MkpB, or MkpA, proteins or mutated in the MAP kinase erkB gene are more resistant to this chemotherapeutic drug, as also shown in human tumor cells.  相似文献   

8.
For many years, the regulation of protein structure and function by phosphorylation and dephosphorylation was considered a relatively recent invention that arose independently in each phylogenetic domain. Over time, however, incidents of apparent domain trespass involving the presence of 'eukaryotic' protein kinases or protein phosphatases in prokaryotic organisms were reported with increasing frequency. Today, genomics has provided the means to examine the phylogenetic distribution of 'eukaryotic' protein kinases and protein phosphatases in a comprehensive and systematic manner. The results of these genome searches challenge previous conceptions concerning the origins and evolution of this versatile regulatory mechanism.  相似文献   

9.
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis.  相似文献   

10.
Reversible protein phosphorylation of serine, threonine, and tyrosine residues by protein kinases and phosphatases is important for the regulation of cellular signal transduction and controls many cellular functions. Disturbances in this regulation have been implicated in a growing number of diseases, making kinases and phosphatases useful targets for therapeutic intervention. The suitability of surface plasmon resonance (SPR) technology has been widely demonstrated in many drug discovery applications. A novel and straightforward methodology is presented for analyzing small molecule binding to two serine/threonine phosphatases, PP1 and PP2B (calcineurin), and to the prototypic tyrosine phosphatase, PTP1B. Emphasis was placed on investigating the immobilization conditions of the phosphatases by using reducing conditions, inhibitors and metal ions. A comparison of inhibitor binding, either to phosphatase (PP2B) alone or in complex with the regulatory protein subunit calmodulin, revealed different kinetics. The methodology was also used to test inhibitor specificity toward different phosphatases. Inhibition of regulatory protein PP-inhibitor-2 binding to PP1 by a small molecule inhibitor was demonstrated. This type of information, together with data on compound binding that is independent of enzyme activity and in which affinities are resolved into kinetic rate constants, may be of great significance for the development of highly specific and high-affinity phosphatase inhibitors.  相似文献   

11.
Plants have the ability to respond to pathogen invasion by specific defense reactions. Components of mammalian signal transduction chains have been identified in plants, and several lines of evidence have implicated such components in elicitor signal transmission in defense responses. In particular, it has been assumed that elicitor signals are transduced via a protein kinase cascade, although the identity of the protein kinases and the function of the phosphorylated proteins remain to be determined. The purpose of this review is to discuss the roles of protein kinases in elicitor signal transduction pathways in plant cells based on recent progress in this field.  相似文献   

12.
Cardiac excitation and contraction are regulated by a variety of signaling molecules. Central to the regulatory scheme are protein kinases and phosphatases that carry out reversible phosphorylation of different effectors. The process of β-adrenergic stimulation mediated by cAMP dependent protein kinase (PKA) forms a well-known pathway considered as the most significant control mechanism in excitation and contraction as well as many other regulatory mechanisms in cardiac function. However, although dephosphorylation pathways are critical to these regulatory processes, signaling to phosphatases is relatively poorly understood. Emerging evidence indicates that regulation of phosphatases, which dampen the effect of β-adrenergic stimulation, is also important. We review here functional studies of p21 activated kinase-1 (Pak1) and its potential role as an upstream signal for protein phosphatase PP2A in the heart. Pak1 is a serine/threonine protein kinase directly activated by the small GTPases Cdc42 and Rac1. Pak1 is highly expressed in different regions of the heart and modulates the activities of ion channels, sarcomeric proteins, and other phosphoproteins through up-regulation of PP2A activity. Coordination of Pak1 and PP2A activities is not only potentially involved in regulation of normal cardiac function, but is likely to be important in patho-physiological conditions.  相似文献   

13.
14.
植物蛋白磷酸酶及其在植物抗逆中的作用   总被引:4,自引:0,他引:4  
翁华  冉亮  魏群 《植物学通报》2003,20(5):609-615
随着多种蛋白磷酸酶在植物中的发现,可逆磷酸化作用在植物各种生理活动中的研究有许多重要的进展。本文概述了蛋白磷酸酶的类型与特点,并着重介绍近年来植物中多种磷酸酶的活性、基因、蛋白等各个水平上的鉴定工作。讨论了几类主要蛋白磷酸酶参与植物抵抗逆境胁迫的有关研究成果。  相似文献   

15.
张继红  陶能国 《广西植物》2015,35(6):935-941
蛋白磷酸酶(protein phosphatase,PP)是蛋白质可逆磷酸化调节机制中的关键酶,而PP2C磷酸酶是一类丝氨酸/苏氨酸残基蛋白磷酸酶,是高等植物中最大的蛋白磷酸酶家族,包含76个家族成员,广泛存在于生物体中。迄今为止,在植物体内已经发现了4种PP2C蛋白磷酸酶。蛋白激酶和蛋白磷酸酶协同催化蛋白质可逆磷酸化,在植物体内信号转导和生理代谢中起着重要的调节作用,蛋白质的磷酸化几乎存在于所有的信号转导途径中。大量研究表明,PP2Cs参与多条信号转导途径,包括PP2C参与ABA调控,对干旱、低温、高盐等逆境胁迫的响应,参与植物创伤和种子休眠或萌发等信号途径,其调控机制不同,但酶催化活性都依赖于Mg2+或Mn2+的浓度。植物PP2C蛋白的C端催化结构域高度保守,而N端功能各异。文中还综述了高等植物PP2C的分类、结构、ABA受体与PP2Cs蛋白互作、PP2C基因参与ABA信号途径以及其他逆境信号转导途径的研究进展。  相似文献   

16.
Phosphorylation is a key post-translational modification for cellular signaling, and abnormalities in this process are observed in several neurodegenerative disorders. Among these disorders, Parkinson’s disease (PD) is particularly intriguing as there are both genetic causes of disease that involve phosphorylation, and pathological hallmarks of disease composed of a hyperphosphorylated protein. Two of the major genes linked to PD are themselves kinases – leucine rich repeat kinase 2 (LRRK2) and phosphatase and tensin induced homolog kinase 1 (PINK1). Mutations in LRRK2 lead to its increased kinase activity and dominantly inherited PD, while mutations in PINK1 lead to loss of function and recessive PD. A third genetic linkage to disease is α-synuclein, a protein that is heavily phosphorylated in Lewy bodies and Lewy neurites, the pathological hallmarks of PD. The phosphorylation of α-synuclein at various residues influences its aggregation, either positively or negatively, thereby impacting its central role in disease pathogenesis. Given these associations of phosphorylation with PD, modulation of this modification is an attractive therapeutic strategy. The kinases that act in these disease relevant pathways have been the primary target for such approaches. But, the development of kinase inhibitors has been complicated by the necessary specificity to retain safety, the redundancy of kinases leading to lack of efficacy, and the difficulties in overcoming the blood–brain barrier. The field of modulating phosphatases has the potential to overcome some of these issues and provide the next generation of therapeutic targets for PD. In this review, we address the phosphorylation pathways involved in PD, the kinases and issues related to their inhibition, and the evolving field of the phosphatases relevant in PD and how they may be targeted pharmacologically.  相似文献   

17.
The focal adhesion protein VASP, a possible link between signal transduction pathways and the microfilament system, is phosphorylated by both cAMP- and cGMP-dependent protein kinases in vitro and in intact cells. Here, the analysis of VASP dephosphorylation by the serine/threonine protein phosphatases (PP) PP1, PP2A, PP2B and PP2C in vitro is reported. The phosphatases differed in their selectivity with respect to the dephosphorylation of individual VASP phosphorylation sites. Incubation of human platelets with okadaic acid, a potent inhibitor of PP1 and PP2A, caused the accumulation of phosphorylated VASP indicating that the phosphorylation status of VASP in intact cells is regulated to a major extent by serine/ threonine protein phosphatases. Furthermore, the accumulation of phosphorylated cAMP-dependent protein kinase substrate(s) appears to account for inhibitory effects of okadaic acid on platelet function.  相似文献   

18.
糖原合成酶激酶 (GSK 3)是一种高度保守的丝氨酸 苏氨酸蛋白激酶 ,在动物中参与诸如糖原合成、胰岛素调节、多种蛋白的转录激活和发育调控等许多生命活动的信号转导。在植物中也分离到了GSK 3 Like基因 ,在拟南芥中的GSKs家族分为四种。GSKs家族在植物中也扮演着重要的角色 ,现有的证据表明 ,植物GSKs可能参与植物的渗透胁迫应答、伤害应答以及油菜素内酯信号转导 ,调节花的发育等等一系列生命活动进程。讨论植物GSKs的发现及其功能研究的最新进展。  相似文献   

19.
Abstract Protein phosphorylation is an important regulatory phenomenon in yeasts just as in other eukaryotic cells and controls a wide variety of cellular processes. The importance of protein phosphatases as well as protein kinases as key elements in such control is becoming increasingly clear. Over the past four years since the first yeast protein phosphatase gene was isolated, many more such genes have been described and the number of genes encoding protein phosphatase catalytic subunits in Saccharomyces cerevisiae has comfortably entered double figures. Given the genetic approaches available, yeasts offer powerful systems for addressing the cellular roles of these enzymes. This review summarises the results of genetic studies aimed at determining the functions of protein serine/threoninc phosphatases in yeast.  相似文献   

20.
The regulation of cellular processes by the modulation of protein phosphorylation/dephosphorylation is fundamental to a large number of processes in living organisms. These processes are carried out by specific protein kinases and phosphatases. In this study, a previously uncharacterized gene (Rv0018c) of Mycobacterium tuberculosis, designated as mycobacterial Ser/Thr phosphatase (mstp), was cloned, expressed in Escherichia coli, and purified as a histidine-tagged protein. Purified protein (Mstp) dephosphorylated the phosphorylated Ser/Thr residues of myelin basic protein (MBP), histone, and casein but failed to dephosphorylate phospho-tyrosine residue of these substrates, suggesting that this phosphatase is specific for Ser/Thr residues. It has been suggested that mstp is a part of a gene cluster that also includes two Ser/Thr kinases pknA and pknB. We show that Mstp is a trans-membrane protein that dephosphorylates phosphorylated PknA and PknB. Southern blot analysis revealed that mstp is absent in the fast growing saprophytes Mycobacterium smegmatis and Mycobacterium fortuitum. PknA has been shown, whereas PknB has been proposed to play a role in cell division. The presence of mstp in slow growing mycobacterial species, its trans-membrane localization, and ability to dephosphorylate phosphorylated PknA and PknB implicates that Mstp may play a role in regulating cell division in M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号