首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actaea asiatica was previously reported to have the most symmetric and primitive karyotype, consisting of 10 m- and 6 sm-chromosomes, which is quite different from those of the remaining species in the genus Actaea, consisting of 10 m-, 4 sm- and two T-chromo somes. In this paper, the chromosomes of this species were re-examined. The results show that Actaea asiatica has the same karyotype as the other species in the genus. Compared with the species in other genera in the tribe Cimicifugeae, i.e. Beesia, Anemonopsis, Souliea and Cimicifuga, Actaea asiatica, together with the remaining species of the genus, has the most asymmetric and thus probably the most advanced karyotype in this tribe because of the presence of two T- chromosomes in their chromosome complements. The two T- chromosomes may serve as one of the most important cytological markers, by which the species in Actaea are clearly distinguishable cytologically from those in Beesia, Anemonop-sis, Souliea and Cimicifuga.  相似文献   

2.
根据以前的报道,类叶升麻 Actaea asiatica Hara具有10条大型的中部着丝点染色体和6条较大 的近中部着丝点染色体,其核型在毛茛科中显得最为对称和原始,而类叶升麻属的其他种类具有10条 大型的中部着丝点染色体、4条较大的近中部着丝点染色体和两条没有短臂的染色体。在毛茛科中,同 一属的染色体形态通常十分相似,因此上述类叶升麻的核型分析结果十分可疑。本文重新检查子该种 的染色体。结果表明其核型与该属其他种类的核型没有明显区别。与升麻属其他4属,即 Beesia, Anemonopsis,Souliea,Cimicifuga相比,类叶升麻及该属其他种类都具有两条没有短臂的T染色体,因 此类叶升麻属 Actaea L.的核型不对称性程度在升麻族中显得最高,其核型在该族中也可能最为进化, 这两条T染色体可以作为类叶升麻属的细胞学标志,据此可以将该属与升麻族其他4属区别开来。  相似文献   

3.
The karyotypes of 16 species and one variety representing nine genera in the Ranunculaceae were analysed in order to obtain information on the placement of the genera Beesia and Eranthis at tribal rank in the family. Those of Beesia , Anemonopsis , Souliea , Cimicifuga , Actaea and Eranthis were found to be very similar to each other, but remarkably different from those of Caltha , Calathodes , Megaleranthis and Trollius with respect to chromosome size and morphology. From cytological data it is clearly evident that Beesia and Eranthis have a much closer affinity to Anemonopsis , Souliea , Cimicifuga and Actaea in the tribe Cimicifugeae than to Caltha , Calathodes , Megaleranthis and Trollius , which generally have been placed together in a single tribe, albeit with different tribal names such as Caltheae, Trollieae and Helleboreae. Therefore, Beesia and Eranthis may find better placement in the tribe Cimicifugeae. The long-presumed, mainly morphology-based close affinity between Eranthis and Helleborus is not supported by both cytological and palynological data. Cytologically, both Actaea and Eranthis appear to be the specialized genera in the Cimicifugeae, through having the most asymmetrical karyotypes in this tribe. Our results strongly support the recent re-definition of the tribe Actaeeae (as Cimicifugeae) to include Beesia and Eranthis , based on maximum parsimony analysis performed separately on molecular data.  © 2006 The Linnean Society of London. Botanical Journal of the Linnean Society , 2006, 150 , 267–289.  相似文献   

4.
毛茛科金莲花族和升麻族细胞学的比较研究   总被引:2,自引:0,他引:2  
对毛茛科金莲花族Trolliese和升麻族Cimicifugeae的细胞学进行了比较研究。发现驴蹄草Caltha palustris L.在云南西北部形成一个多倍体系列(2n=32,48,64),四倍体细胞型(2n=4x=32)较为常见,其核型有明显的居群间变异。驴蹄草属Caltha、鸡爪草属Calathodes、Megaleranthis以及金莲花属Trollius的染色体在大小上基本相似,都属于中等大小的R-型染色体。细胞学和花粉学证据都支持鸡爪草属与Megaleranthis和金莲花属有较近的亲缘关系。铁破锣属Beesia、Anemonopsis、黄三七属Souliea、升麻属Cimicifuga以及类叶升麻属Actaea的核型彼此基本相似,在染色体大小和形态上都与驴蹄草属、鸡瓜草属、Megaleranthis以及金莲花属的核型明显有别。细胞学证据表明铁破锣属应是升麻族中的成员。  相似文献   

5.
角叶铁破锣的核型及其系统学意义   总被引:6,自引:4,他引:2  
本文首次报道了角叶铁破锣的核形态。其静止核和有丝分裂前期染色体分别属于复杂中央染色微粒型和中间型;中期染色体数目为2n=16;核型公式为2n=10m+4st十2t(2sat)。根据上述结果并结合有关资料,本文讨论了铁破锣和角叶铁破锣之间的核型差异以及铁破锣属的系统位置,指出铁破锣属可能与升麻属等类群关系较近而与金莲花属等类群关系较远,因此将该属置于升麻族中比置于金莲花族中合理。  相似文献   

6.
A molecular phylogeny of the subfamily Cyrtandroideae represented by five genera of four tribes was constructed using sequence analysis of the internal transcribed spacers (ITS) and partial 5.8 S rRNA gene (3’end) of nuclear ribosomal DNA. Direct PCR sequencing method was used in the study. The sequences of ITS-1 in the five species range from 234 bp to 258 bp in size and those of ITS-2 from 218 bp to 246 bp. The ITS-1 (258 bp) and ITS-2 (218 bp) of Whytockia bijieensis differ greatly from those of the other species in size, sequence and G + C content, and therefore the tribe Klugieae represented by W. bijieensis may have diverged from the ancestor of the subfamily Cyrtandroideae at a very early time. In PAUP analysis, W. bijieensis was used as the functional outgroup, and only one most parsimonious Fitch tree was obtained through exhaustive search. The tree has 353 steps, with CI = 0. 932 and RI = 0. 529. In the tree, Chirita crassifolia is basal to a monophyletic group comprising Cyrtandra umbellifera, Briggisia longipes and Anna mollifolia, and the monophyletic group is strongly supported by the bootstrap value (97). The tribes Trichosporeae and Cyrtandreae represented respectively by Anna mollifolia and Cyrtandra urnbellifera both evolved from the tribe Didymorcarpeae, which can explain why many intermediate taxa exist among the three tribes. According to this, the present authors suggest that the tribe Trichosporeae and the tribe Cyrtandreae be merged with the tribeDidymocarpeae.  相似文献   

7.
(1) In this paper, differences among the five genera constituting the tribe Cimi cifugeae of the family Ranunculaceae are discussed. Beesia, the first genus, with compound cymes and flowers bearing neither petals nor staminodes, is different from the other four genera with simple or compound racemes and flowers bearing either petals or staminodes, and may occupy a primitive position within the tribe. As to the other four genera, Souliea is characterized by the stem without basal leaf but with 2~5 sheath-like cataphylls, the sepals being deciduous but not caducous, moderate in size and petaloid, the petals being much smaller than sepals, but pink in color and more or less petaloid, the pollen grains being pan tocolpate or pantoporate, the carpels being 1~3 per flower, when mature forming dry linear follicles conspicuously reticulate on the surface and dehiscent along the ventral suture, and the seeds being reticulate-foveolate on the surface. These diagnostic characters indicate clear ly that Souliea might have deviated from the lineage formed by the next three genera, i. e. Anemopsis, Cimicifuga, and Actaea, which have their own well-recognizable diagnostic characters. Anemopsis is characterized by the normally developed basal leaf, the racemose inflorescence with sparse and few long pedicellate flowers, the sepals 7~10 in number, mod erate in size, and petaloid, the petals slightly smaller than sepals, the tricolpate pollen grains, the carpels 2~4 per flower, stalked, when mature forming dry oblong follicles with transverse veins on the surface, and the seeds with scaly membranous wings. Cimicifuga is distinguished by the normally developed basal leaf, the caducous, small, often sepaloid sepa ls, the organs of the second floral whorl sometimes with empty sterile anthers being stamin odes not petals, the tricolpate pollen grains, the carpels 1~8 per flower, when mature form ing dry oblong or ovoid follicles with transverse veins on the surface, and the seeds usually with scaly membranous wings. The last genus Actaea is different by the basal leaf trans formed into a small scale, the caducous, small, often sepaloid sepals, the organs of the sec ond floral whorl being clawed petals, the pollen grains with 3(4~6) colpi, carpel 1 per flow er, when mature forming a fleshy indehiscent berry smooth on the surface and without any veins, the seeds roughish or slightly rugose, neither foveolate nor winged on the surface, and the advanced most asymmetric karyotype. According to the diagnostic characters given above, we believe that Beesia, Souliea, Anemopsis, Cimicifuga, and Actaea do represent five independent genera, and the treatment of the tribe Cimicifugeae including these five genera in it by Hutchinson (1923), Janchen (1949) and some other authors, has precisely shown the taxonomic diversity within the tribe. We are therefore unable to accept the treatment published by Compton et al. (1998) to lump the two genera, Souliea and Cimicifuga, into the genus Actaea. (2) Compton et al. (1998, 1997) found out that the Chinese plants previously identified by various authors as Cimicifuga foetida L., in which the terminal and lateral racemes of the compound raceme flower more or less simultaneously, differ from the true C. foetida L. in northern Asia, in which the terminal raceme of the compound raceme flowers before the lateral ones, and thus restored the species name Cimicifuga mairei Lévl. , which was formerly reduced to the synonymy of C. foetida L. , for the Chinese plants. After examining the specimens collected from Siberia and from Southwest China we failed to find out any other differences in both vegetative and reproductive organs between the plants of the two regions, and we consider that it is better to treat the populations in Southwest and Central China as a geographical variety of Cimicifuga foetida L. A new combination, Cimicifuga foetida L. var. mairei (Lévl.) W. T. Wang & Zh. Wang, is thus made. (3) 3 species of Delphinium, 1 species and 1 variety of Clematis are described as new.  相似文献   

8.
ITS sequences of 15 representative species of five sections in the genus Populus L. were determined. By using direct sequencing of PCR product, it was found that the fragments of internal transcribed spacers (ITS) are about 594 bp in length. The length of ITS-1 and ITS-2 is about 220 bp and 210 bp, respectively, while that of 5.8s is 164 bp. Its G+C content is about 69.0%. The number of phylogenetically informative loci is higher in ITS-2 than in ITS-1. Transversion and transition are two main factors that drive the ITS evolution, and more insertions and deletions occurred in ITS-2. Taking Salix matsudana Koidz. and Salix suchowensis Cheng as outgroups, phylogenetic analysis of ITS sequences using PAUP 4.0 software indicated that Populus is monophyletic group and can be divided into two main clades. One is the section Leuce , and the other is the remaining sections.  相似文献   

9.
ITS sequences of 15 representative species of five sections inthe genus Populus L. were determined. By using direct sequencing of PCR product, it was found that the fragments of internal transcribed spacers (ITS) are about 594 bp in length. The length of ITS-1 and ITS-2 is about 220 bp and 210 bp, respectively, while that of 5.8s is 164 bp. Its G+C content is about 69.0%. The number of phylogenetically informative loci is higher in ITS-2 than in ITS-1. Transversion and transition are two main factors that drive the ITS evolution, and more insertions and deletions occurred in ITS-2. Taking Salix matsudana Koidz. and Salix suchowensis Cheng as outgroups, phylogenetic analysis of ITS sequences using PAUP 4.0 software indicated that Populus is monophyletic group and can be divided into two main clades. One is the section Leuce, and the other is the remaining sections.  相似文献   

10.
根据ITS序列证据重建防己科蝙蝠葛族的系统发育   总被引:10,自引:4,他引:6  
研究了国产防己科蝙蝠葛族tirb.Menispermeae9属20种和外类群青牛胆族trib.Tinosporeae 2属3种植物完整的ITS(包括5.8S rDNA)序列。trib.Menispermeae的ITS长527~601 bp,排序后长667bp。当gap处理为missing时具281个有信息位点。PAUP软件分析结果表明:①trib.Menispermeae是一个单系类群,该分支得到hootstrap l00%的支持;②确定了存疑种Pachygone valida的系统学位置,该种是Coc—culus属的成员;③Sinomenium和Menispermum两属有很近的系统学关系,组成族内稳定的一支,它们的ITS序列同源性极高,ITS1比族内其它属长41~73bp;④Stephania和Cyclea也是系统发育关系很近的两个类群。前者具两个主要分支,其IIS1、ITS2的G+C含量差异较大,在种类组成上,该两大支与传统上Stephania属内处理的2个亚属——千金藤亚属subgen.Stephania和山乌龟亚属subgen.Tuberiphania基本一致;Cyclea属内种间的ITS序列差异小,同源性极高。  相似文献   

11.
The phylogeny of the tribe Menispermeae (Menispermaceae) represented by 20 species of 9 genera in China, was reconstructed based on sequence analysis of the internal transcribed spacers (ITS) (including ITS1, ITS2, and 5.8S rRNA gene ) of nuclear ribosomal DNA. Three species of two genera in the tribe Tinosporeae were designated as outgroups. Direct PCR sequencing method was used in the study, The sizes of ITS within trib. Menispermeae range from 527 to 601 bp. The aligned length is 667 bp, which provides 281 phylogenetically informative sites when gaps are treated as missing. The results of phylogenetic analyses show that: ① trib. Menispermeae is a monophyletic group strongly supported by a bootstrap value of 100%; ② Pachygone valida, whose systematic position was uncertain in the previous classification, should be placed in the Cocculus. ③Sinomenium and Menispermum are two close genera of the tribe. Their sequcences are very similar to each other, with ITS1 having 41 to 73 bp longer than that of the other genera in trib. Menispermeae. ④ Stephania and Cyclea are also closely related. The former forms two major clades, which are approximately consistent with the two traditional subgenera: subgen. Stephania and subgen. Tuberiphania. The species of Cyclea are mutually little diverged in complete ITS sequences, and they com-prise a sister clade to the genus Stephania.  相似文献   

12.
毛茛科金莲花亚科植物的地理分布   总被引:11,自引:1,他引:10  
本文对毛茛科金莲花亚科各属的地理分布作了分析,该亚科植物除了少数属的一些种分布到南半球的温带地区,一些种分布或延伸到亚热带山地、非洲东部和北部的干旱、半干旱的地区外,绝大部分的属、种均分布于泛北极区域。根据其17个属的地理分布式样,把它们划分为8个分布区类型:(1)北温带分布类型4属;(2)北温带和非洲分布类型1属;(3)北半球温带和南半球间断分布类型1属;(4)欧洲和东亚间断分布类型1属;(5)西亚分布类型1属;(6)地中海分布类型3属;(7)欧亚和温带亚洲分布类型1属;(8)东亚分布类型5属。本文以形态特征为主,结合花粉和染色体的性状分析,认为东亚特有的鸡爪草属、Megaleranthis和铁破锣属可能分别是联系驴蹄草属和金莲花属,鸡爪草属和金莲花属以及金莲花族和升麻族的中间类型。另外,文中详细地统计了该亚科的不同等级分类群及特有种在各个植物区的分布,并从系统发育的观点讨论了各个植物区所具有的原始类群和进化类群,提出了如下论点,即东亚植物区(特别是中国西南部)不但是金莲花亚科植物分布的多度和多样性中心以及特有类群的分布中心,而且还是原始类群的保存中心,伊朗-土兰区及地中海周围是第二分布中心。  相似文献   

13.
In the present study, the entire first and second internal transcribed spacer (ITS-1 and ITS-2) regions of nuclear ribosomal DNA (rDNA) of Haemaphysalis longicornis from China were amplified by polymerase chain reaction. The 45 representative amplicons were sequenced, and sequence variation in the ITS was examined. The ITS sequences of H. longicornis were 3644 bp in size, including the part of 18S rDNA, 28S rDNA sequences and the complete ITS-1, 5.8S rDNA and ITS-2 sequences. Sequence analysis revealed that the ITS-1, 5.8S rDNA and ITS-2 of this hard tick were 1582, 152, and 1610 bp in size, respectively. The intra-specific sequence variations of ITS-1 and ITS-2 within H. longicornis were 0–2 and 0–2.2%; however, the inter-specific sequence differences among members of the genus Haemaphysalis were significantly higher, being 35.1–55.2 and 37–52% for ITS-1 and ITS-2, respectively. The molecular approach employed in this study provides the foundation for further studies of the genetic variation of H. longicornis from different hosts and geographical origins in China.  相似文献   

14.
Sequence analysis of the internal transcribed spacer (ITS) of the 18S(ITS1)-5.8S-26S(ITS2) rDNA region was performed in order to analyse the phylogenetic relationships between 13 Patagonian species of the genus Berberis (Berberidaceae). The divergence values between the pairwise sequence in the studied Patagonian species were in the range 2.9–22.9%. The lengths of the ITS1 and ITS2 sequences were in the range 227–231 bp and 220–224 bp, respectively, and the 5.8S sequence was 159 bp throughout all species . B. microphylla sensu Landrum does not appear to be monophyletic based on current sampling. Indeed, we suggest that B. microphylla should be distinguished from B. buxifolia , B. parodii , and B. heterophylla . ITS sequences, together with data obtained from morphological, biochemical, amplified fragment length polymorphism, and cytological characterizations, support the existence of diploid and polyploid hybrid speciation in the genus.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 321–328.  相似文献   

15.
EVOLUTION OF THE FUCACEAE (PHAEOPHYCEAE) INFERRED FROM nrDNA-ITS   总被引:2,自引:0,他引:2  
Sequences of the internal transcribed spacer region (ITS-1, 5.8S, and ITS-2) of nuclear ribosomal DNA were obtained from 16 species representing all six genera of Fucaceae ( Ascophyllum, Fucus, Hesperophycus, Pelvetia, Pelvetiopsis, and Xiphophora ) plus one outgroup ( Hormosira ). Parsimony analysis indicated that the family Fucaceae is monophyletic and that the northern hemisphere taxa are highly divergent from the only southern hemisphere genus, Xiphophora. The genus Pelvetia is not monophyletic because the European P. canaliculata is more closely related to Fucus, Hesperophycus, and Pelvetiopsis than to other Pelvetia species. We establish Silvetia, gen. nov. and transfer the 3 Pacific species of Pelvetia to the new genus. Fucus is monophyletic and not ancestral in the Fucaceae. The ITS sequences identified two strongly supported lineages within Fucus, one with F. serratus sister to the clade containing F. gardneri, F. distichus, and F. evanescens and a second including F. vesiculosus, F. spiralis, F. ceranoides, and F. virsoides. The ITS was not useful for resolving relationships within each of these clusters and between populations of F. vesiculosus. Within-individual variation in ITS sequences is high in Fucus, a derived genus, compared to Ascophyllum, a more ancestral genus. Mapping of the two characters that form the basis of Powell's model for speciation in the Fucaceae showed that 1) number of eggs per oogonium has not followed a gradual reduction and that 2) monoecy/dioecy has changed several times during evolution of this family.  相似文献   

16.
The primary structure of the ribosomal DNA internal transcribed spacers (ITS-1 and ITS-2) and 5.8S rRNA gene were used to characterize and identify 2 monogenean species of Gyrodacrylus living externally on the threespine stickleback (Gasterosteus aculeatus). The ITS region was amplified by PCR from freshwater, brackish, and marine isolates of Gyrodactylus arcuatus and G. branchicus, and the ends of the coding regions were identified by comparative alignment. No intraspecific and very low interspecific variation were observed in the 5.8S rRNA gene; high inter- and low intraspecific variation were revealed in the ITS-1 and ITS-2 regions. The morphological species identification was in all cases confirmed by the molecular identification. Intraspecifically, samples from 2 locations in the North Sea could be differentiated, but the Baltic sample resembled North Sea genotypes. Our approach offers perspectives for a multimetric genetical, morphometrical, and ecological taxonomy of the genus Gyrodactylus.  相似文献   

17.
Twenty chickpea accessions belonging to ten different countries of the world have been subjected to phylogeny and length variations from nuclear ribosomal DNA (nr DNA). ITS1–5.8S–ITS2 regions of Cicer accessions were used for amplification in two sets, each comprising a reverse and forward ITS primers. Lengths of ITS-1 of C. arietinum and C. reticulatum ranged from 340 to 350 bp whereas that of ITS-2 from 400 to 410 bp. In all the 20 accessions investigated, GC content in ITS-1 ranged from 40 to 55% and in ITS-2 from 42 to 55%. Sequencing of polymerase chain reaction product from ITS-1 showed variability in 278 and 290 bp due to adenine and guanine nucleotide base pairs. BLAST search for ITS-1 region revealed highest homology (99%) with four strains of C. arietinum accessions. Whereas, ITS2 showed 100% homology with C. arietinum and 99% homology with that of C. echinospermum.  相似文献   

18.
A molecular phylogenetic analysis of Cynoglottis was performed to evaluate previous hypotheses based on non-molecular evidence concerning the position of this genus within Boraginaceae tribe Boragineae. ITS-5.8S and trnLUAA sequences from the nuclear and chloroplast non-coding genomes were obtained for four Cynoglottis taxa and selected members of the related genera Anchusa, Anchusella, Gastrocotyle, Brunnera and Pentaglottis. Cynoglottis is monophyletic, but neither trnL nor ITS support a close relationship with Brunnera, unlike previously supposed on morphological grounds. Brunnera is, instead, related to the southwestern European monotypic genus Pentaglottis, with which it forms a basal clade. ITS-5.8S sequences show that Anchusa thessala, a southeastern European annual species of Anchusa subg. Buglossellum, is sister to Cynoglottis and that the two taxa form a clade which also includes the Balkan endemic Gastrocotyle macedonica. Species of Anchusa subg. Anchusa form a separate lineage with high bootstrap support, suggesting that this heterogeneous genus is paraphyletic with respect to Cynoglottis. ITS sequences also discriminate between the Balkan-Apenninic diploid C. barrelieri and the Anatolian tetraploid C. chetikiana, albeit with low support. The molecular results are discussed in the light of karyological, morphological and chorological aspects.This work has been supported by M.I.U.R. 40% 2003 and the University of Firenze.  相似文献   

19.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

20.
The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial beta-tubulin gene of B. poelea, first described from brown boobies (Sula leucogaster) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that B. poelea belonged to the clade of piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS-1, 5.8S, ITS-2, and partial beta-tubulin gene sequence shared conserved regions with previously described Babesia and Theileria species. The intron of the beta-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号