首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
高山红景天(RhodiolasachalinensisA.Bor.)培养细胞中,甙元酪醇在细胞生长静止期大量积累,而此时糖基化反应的效率很低,因而红景天甙(salidroside)产量较低。考虑到培养细胞中酪醇葡萄糖基转移酶的活性在指数生长期达到最高,考察了在指数生长期添加外源酪醇生物转化生产红景天甙的可能性,并探讨了酪醇添加浓度、添加方法及细胞密度对酪醇转化率及红景天甙产量的影响。结果表明,细胞在酪醇浓度为1mmol/L的培养基中培养24h后可使酪醇转化率达到95%;过高的酪醇浓度(>3mmol/L)对细胞生长及酪醇转化率都有明显抑制作用;通过较低浓度酪醇的3次重复添加,可使细胞密度为6gDW/L、12gDW/L及18gDW/L的培养物中的红景天甙产量分别达到1320mg/L、1740mg/L和1980mg/L。  相似文献   

2.
Salidroside and its aglycone tyrosol are important compounds found in Rhodiola plants. In this study, callus derived from Rhodiola crenulata was induced and grown when explants were incubated on a Murashige and Skoog (MS) medium containing various concentrations of 6-benzyaldenine (BA), naphthalene acetic acid (NAA) and thidiazuron (TDZ). Callus was easily initiated from juvenile leaves in half strength MS medium supplemented with 0.5 mg/L BA and 3.0 mg/L NAA, while full strength MS containing 0.5 mg/L TDZ and 0.5 mg/L NAA was the best for callus subculture and subsequent cell suspension culture. The activities of l-phenylalanine ammonia lyase (PAL) and β-d-glucosidase, two key enzymes in salidroside synthesis, increased at first and subsequently decreased in cell suspension cultures. The salidroside and tyrosol levels in the cell suspension cultures were determined using high-performance liquid chromatography. High levels of salidroside and tyrosol were detected in cell suspension cultures of R. crenulata extracted with 75 % methanol, demonstrating that the biotechnological production of these compounds using plant cell suspension cultures derived from R. crenulata may be an attractive alternative to harvest-based production.  相似文献   

3.
探索了高山红景天(Rhodiola sachalinensis A.Bor)细胞培养中红景天甙生物合成的途径,认为甙元酪醇是经由莽草酸途径生成的。在此基础上研究了酪醇、L-酪氨酸与L-苯丙氨酸三种前体加入对红景天甙生物合成的调控作用。结果表明,酪醇、酪氨酸等前体易被多酚氧化酶氧化成褐色,用与前体浓度为1:1的V。来防止褐化效果显著;浓度为0.5mmol/L的酪醇,酪氨酸及苯丙氨酸在细胞培养15d时添加,使红景天甙含量由0.336%分别提高到1.43%、1.11%、0.85%。  相似文献   

4.
5.
Bulb cultures of Leucojum aestivum and L. aestivum ‘Gravety Giant’ were subcultured in medium containing the precursor 4’‐O‐methylnorbelladine (MN) at various concentrations [0 (control), 0.15 and 0.3 g/L]. The cultures were conducted in bioreactor RITA® and lasted for 15, 30, 40 and 50 days. The growth rate and the alkaloid accumulation in bulblets were studied. For this latter purpose, a purification method was developed. It comprised a highly selective solid phase extraction using on the one hand, UPTI‐CLEAN SI and SCX cartridges for plant extracts and on the other hand, 2H cartridges for culture media. Pure alkaloidal fractions were, thus, analyzed by LC‐ESI‐MS allowing the quantitative evaluation of galanthamine and lycorine from culture extracts. Precursor feeding along with temporary immersion conditions was found to significantly improve the accumulation of both galanthamine and lycorine. The maximal concentrations of galanthamine (0.81 mg/g DW) and lycorine (0.54 mg/g DW) in L. aestivum bulblets were reached, respectively, after 40 days of culture with 0.15 g/L of precursor and after 30 days of culture with 0.3 g/L of precursor. In L. aestivum ‘Gravety Giant’ bulb cultures, 0.3 g/L of precursor was the best condition for both galanthamine (0.6 mg/g DW after 50 days) and lycorine (1.13 mg/g DW after 30 days).  相似文献   

6.
研究植物激素浓度和培养周期对金线莲原球茎悬浮培养生长及其代谢产物积累的影响,以增加金线莲悬浮培养的生长量,提高次生代谢产物的生产。结果表明,MS培养基添加S-3307 1.0mg/L,6-BA0.5mg/L和3%的蔗糖适合总生物量的生长(214.45g/L,FW和18.23g/L DW)。而MS培养基添加S-3307 1.0mg/L,6-BA 3.0mg/L和5%的蔗糖,总黄酮,总酚和多糖的干重(5.43mg/g,2.87mg/g和243.23mg/g)达到最大化。研究原球茎悬浮培养过程,发现经过7个星期培养就能获得最大的生物质总量(225.98 g/L的FW和18.53 g/L的DW)、总黄酮干重(5.09mg/g)和总酚干重(2.04mg/g),而多糖生产达到其峰值(229.36mg/g干重)是在培养后5个星期。  相似文献   

7.
Lignans and neolignans are important biologically active ingredients (BAIs) biosynthesized by Linum usitatissimum. These BAIs have multi-dimensional effects against cancer, diabetes and cardio vascular diseases. In this study, yeast extract (YE) was employed as an elicitor to evaluate its effects on dynamics of biomass, BAIs and antioxidant activities in L. usitatissimum cell cultures. During preliminary experiments, flax cultures were grown on different concentrations of YE (0–1000 mg/L), and 200 mg/L YE was found to be optimum to enhance several biochemical parameters in these cell cultures. A two-fold increase in fresh (FW) and dry weight (DW) over the control was observed in cultures grown on MS medium supplemented with 200 mg/L YE. Similarly, total phenolic (TPC; 16 mg/g DW) and flavonoids content (TFC; 5.1 mg/g DW) were also positively affected by YE (200 mg/L). Stimulatory effects of YE on biosynthesis of lignans and neolignans was also noted. Thus, 200 mg/L of YE enhanced biosynthesis of secoisolariciresinol diglucoside (SDG; 3.36-fold or 10.1 mg/g DW), lariciresinol diglucoside (LDG; 1.3-fold or 11.0 mg/g DW) and dehydrodiconiferyl alcohol glucoside (DCG; 4.26-fold or 21.3 mg/g DW) in L. usitatissimum cell cultures with respect to controls. This elicitation strategy could be scaled up for production of commercially feasible levels of these precious metabolites by cell cultures of Linum.  相似文献   

8.
The ability of the Alcaligenes faecalis 2 strain to utilize acrylamide and acrylic acid upon cultivation with these compounds as the only sources of carbon and energy has been investigated. Complete utilization of the acrylic acid present in the medium at concentrations below 0.113 g/L was observed by cultivation day 5, at a concentration of 0.225 g/L by day 7, and at a concentration of 0.45 g/L by day 17. Complete utilization of the acrylamide present in the medium at concentrations below 0.4 g/L was observed by day 5, at a concentration of 0.9 g/L by day 7, and at a concentration of 1.8 g/L by day 20. Importantly, bacterial growth did not start before complete transformation of acrylamide into acrylic acid. The rate of acrylamide transformation by growing bacteria and a cell suspension in the stationary growth phase amounted to 12.5 mg/L h at a cell concentration of 610 mg/L and 300 mg/L h, at a concentration of 1500 mg/L. A. faecalis 2 cells immobilized on BVV-22 basalt fibers and Carbopon-B-aktiv at concentrations of 3000 and 800 mg dry cells/L, respectively, transformed acrylamide at a rate of 1200 mg/L h.  相似文献   

9.
Low‐yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline‐O‐glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY‐2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of ”Ser‐Pro“ dipeptide, or (SP)32, to study cell growth and protein secretion, culture scale‐up, and establishment of perfusion cultures for continuous production. The BY‐2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32‐tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY‐2 cells cultured in a 5‐L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day?1, generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures.  相似文献   

10.
The response of steady-state continuous cultures of Methylobacterium sp. RXM to the addition of methanol pulses was studied. The increase of methanol concentration in the medium did not result in cell death under any of the conditions tested. When the growth rate of the steady-state cultures was low ( D = 0.046 h−1), the specific growth rate increased. When the concentration of methanol in the pulse was increased from 36 mmol l−1 to 280 mmol l−1, uncoupled growth occurred and the molar cell yield decreased. Conversely, steady-state cultures at high growth rate ( D = 0.2 h−1) showed a decrease in both specific growth rate and molar cell yield after the addition of the methanol pulses (32 and 164 mmol 1−1). For all conditions, formaldehyde and formate were excreted into the medium but the levels did not exceed 1.13 mmol 1−1 Slow-growing cultures were characterized by cells with high derepressed specific activities of methanol dehydrogenase and low specific activities of formaldehyde and formate dehydrogenases, fast-growing cells had lower specific activity for methanol dehydrogenase and higher activities of formaldehyde and formate dehydrogenases, resulting in the excretion of lower concentrations of formaldehyde and formate.
It is concluded that slow-growing cultures are more stable than fast-growing cultures for low methanol concentration fluctuations, and it is expected that maximum growth yields throughout the fermentation time are better achieved under the former conditions. However, for large fluctuations in the substrate concentration, the bacterial metabolic responses were identical both for slow-growing and fast-growing cultures.  相似文献   

11.
The kinetics of growth, the uptake of macronutrients, and the accumulation of indole alkaloids were investigated in long-term, heterotrophically cultured transgenic ("hairy") roots of Catharanthus roseus.Tabersonine, ajmalicine, and serpentine were monitored over a 70-day period. The doubling time [dry-weight (DW) basis] of C. roseus hairy roots in B5/2 nutrients supplemented with 3% sucrose was 3.6 days. NH(4) (+), NO(3),(-) and P(i) were depleted sequentially from culture medium by hairy roots, while sugars remained undepleted. The growth-limiting nutrient was inorganic nitrogen, NH(4) (+) and NO(3) (-), with exponential-phase overall biomass yields of 34.1 and 5.0 g DW/g nutrient, respectively. Extracellular pH decreased to 4.8 in early exponential phase of culture growth from the initially adjusted value of 5.7, increased subsequently to a maximum of 7.7 in late exponential phase of growth coincident with the maximum of fresh weight (FW)/DW ratio, before decreasing to 5.5-5.0. The organic acids, pyruvate, formate, lactate, and succinate were excreted by hairy roots starting in late phase of exponential growth, possibly resulting in the late-culture pH decrease. Tabersonine accumulation was distinctly growth associated with maximum specific and total yields of 1.15 mg/g DW and 5.6 mg/L, respectively, in late-exponential phase of growth. Serpentine accumulation was non growth associated with increasing specific and total levels in stationary growth phase: 1.3 mg/g DW and 10.5 mg/L, respectively. The accumulation of ajmalicine also appeared growth associated. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 527-534, 1997.  相似文献   

12.
研究了在添加外源精胺时,霍山石斛类原球茎细胞生长、多糖积累、主要营养物质消耗以及细胞内多胺含量的变化。结果表明,0.6mmol/L的精胺明显促进霍山石斛类原球茎细胞的生长和多糖的合成。细胞的比生长速率从0.046d-1提高到0.054d-1。培养30d时,类原球茎干重达32.4gDW/L,多糖总产量为2.46g/L,分别是对照的1.32和1.31倍。添加外源精胺能够提高内源多胺的含量,同时,蔗糖酶和硝酸还原酶等相关代谢酶的活性增强,促进了碳、氮的吸收和利用。  相似文献   

13.
研究了在添加外源精胺时,霍山石斛类原球茎细胞生长、多糖积累、主要营养物质消耗以及细胞内多胺含量的变化。结果表明,0.6mmol/L的精胺明显促进霍山石斛类原球茎细胞的生长和多糖的合成。细胞的比生长速率从0.046d-1提高到0.054d-1。培养30d时,类原球茎干重达32.4g DW/L,多糖总产量为2.46g/L ,分别是对照的1.32和1.31倍。添加外源精胺能够提高内源多胺的含量,同时,蔗糖酶和硝酸还原酶等相关代谢酶的活性增强,促进了碳、氮的吸收和利用。  相似文献   

14.
Growth and alkaloid production in Uncaria tomentosa cell suspension cultures were studied in Murashige and Skoog medium supplemented with 10 microM 2,4-dichlorophenoxyacetic acid, 10 microM kinetin, and 58 mM sucrose for maintenance and with 10 microM indole-3-acetic acid, 10 microM kinetin, and 58 mM sucrose for production. A U. tomentosa pale Uth-3 cell line, cultured in the production medium, showed a reduced lag phase and a specific growth rate (mu) of 0.27 day(-1), while cells growing in the maintenance medium showed mu = 0.20 day(-1). U. tomentosa cells growing in the production medium produced monoterpenoid oxindole alkaloids (MOA) in amounts of 10.2 +/- 1.6 microg g(-1) dry weight (DW). The chemical profile of MOA produced by in vitro cell cultures was similar to that found in the plant. After 10 subcultures, maximum MOA production decreased to 2.0 +/- 0.7 microg g(-1) DW, while tryptamine alkaloids (TA) were produced with a maximum of 6.2 +/- 0.4 microg g(-1) DW. The increase of initial sucrose concentration up to 145 mM in the production medium enhanced the cell biomass by 3.2-fold (from 10.2 +/- 0.1 to 32.8 +/- 1.1 g DW L(-1)), reduced mu from 0.27 to 0.23 day(-1), and provoked a substantial accumulation of TA (23.1 +/- 4.7 microg g(-1) DW). A high sucrose concentration stimulated MOA production in the maintenance medium (2.7 +/- 0.5 microg g(-1) DW), even in the presence of 2,4-dichlorophenoxyacetic acid.  相似文献   

15.
Summary The uptake of carbohydrates and oxygen by cell suspension cultures of the plant Eschscholtzia californica (California poppy) was studied in relation to biomass production in shake flasks, a 1-1 stirred-tank bioreactor and a 1-1 pneumatically agitated bioreactor. The sequence of carbohydrate uptake was similar in all cases, with sucrose hydrolysis occurring followed by the preferential uptake of glucose. The uptake of fructose was found to be affected by the oxygen supply rate. Carbohydrate utilization occurred at a slower rate in the bioreactors. Apparent biomass yields, Y X/S, ranged from 0.42 to 0.50 g biomass/g carbohydrate, while true biomass yields, Y X/S, were about 0.69 g/g. The maintenance coefficient for carbohydrate, m S, ranged between 0.002 and 0.008 g/dry weight (DW) per hour. The maximum measured specific oxygen uptake rate was 0.56 mmol O2/g DW per hour and occurred early in the growth stage. The decline in specific uptake rate coincided with a decline in cell viability. The oxygen uptake rate was faster in shake flasks, corresponding to the higher growth rate obtained. The true growth yield on oxygen, YX/O2, was calculated to range from 0.83 to 1.23 g biomass/g O2, while the maintenance coefficient, mO2, ranged from 0.15 to 0.25 mmol O2/g DW per hour. The growth yields for oxygen determined from the stoichiometry of an elemental balance were within 10% of those calculated from experimental data. Offprint requests to: Raymond L. Legge  相似文献   

16.
Linum spp. from section Syllinum are promising for the production of aryltetralin lignans like podophyllotoxin (PTOX) and 6-methoxypodophyllotoxin (MPTOX). MPTOX is a PTOX congener that has cytotoxic activity comparable with PTOX. In this study root cultures of Linum Bungei from section Dasyllinum, L. strictum from section Linastrum, L. album, L. mucronatum ssp. mucronatum and L. nodiflorum from section Syllinum were established and their MPTOX levels were investigated in 1000 ml flasks. Root cultures of L. mucronatum ssp. mucronatum and L. nodiflorum were used to examine cell growth and production of MPTOX during a culture period of 36 days in 250 ml flasks. Considerable amounts of MPTOX in root cultures (1000 ml flasks) of L. album (6 mg/100 g DW), L. mucronatum ssp. mucronatum (770 mg/100 g DW) and L. nodiflorum (91 mg/100 g DW) were detected while it wasn't detected in root cultures of L. Bungei and L. strictum. In time course experiments, the maximum amount of MPTOX in L. nodiflorum root culture was at day 16 with 480 mg/ 100 g DW and the maximum amount of MPTOX in L. mucronatum ssp. mucronatum root culture was at day 12 with 130 mg/100 g DW. The results showed that root cultures of Linum species from section Syllinum are rich sources of MPTOX and since this lignan has remarkable cytotoxic activity, it can be used as a precursor for the production of antitumor agents.  相似文献   

17.
葡萄细胞悬浮培养生产白藜芦醇   总被引:1,自引:0,他引:1  
以巨峰葡萄果皮为外植体,在添加2.0 mg/L 6-苄基嘌呤(6-BA)和0.1 mg/L 2,4-二氯苯氧基(2,4-D)的B5培养基上诱导葡萄愈伤组织; 以50 g/L的初始接种量在添加1.0 mg/L 6-BA和0.05 mg/L 2,4-D的B5液体培养基上建立葡萄悬浮培养体系。在25~27 ℃下,摇床振荡暗培养(120~130 r/min)18 d后,葡萄细胞生物量和白藜芦醇含量达到最大值(16.17 g/L、95.69 μg/g干质量)。在培养第12天时,向培养基中添加100 μmol/L茉莉酸甲酯(MeJA),经过6 d处理,细胞中白藜芦醇含量达235.73 μg/g干质量。  相似文献   

18.
The oxidation of medium chain length alkanes and alkenes (C6 to C12) by Pseudomonas oleovorans and related, biocatalytically active recombinant organisms, in two-liquid phase cultures can be used for the biochemical production of several interesting fine chemicals. The volumetric productivities that can be attained in two-liquid phase systems can be, in contrast to aqueous fermentations, limited by the transport of substrates from an apolar phase to the cells residing in the aqueous phase and by toxic effects of apolar solvents on microbial cells. We have assessed the impact of these possible limitations on attainable productivities in two-liquid phase fermentations operated with mcl-alkanes. Pseudomonas oleovorans grows well in two-liquid phase media containing a bulk n-octane phase as the sole carbon source. However, cells are also damaged, typically resulting in a cell lysis rate of about 0.08 to 0. 10 h-1. These rates could be lowered by 50 to 70% to 0.03 h-1 and substrate yields increased from 0.55 to 0.85 g g-1 by diluting octane in non-metabolizable long-chain hydrocarbon solvents. Transfer rates of medium chain length (mcl) alkanes from the apolar phase to the cells were determined by following growth and the rate at which carbon-containing metabolites accumulated in the different phases of the cultures. mcl-Alkane solvent-cell transfer rates of at least 79, 64, and 18 mmol per liter of aqueous medium per hour were determined for n-heptane, n-octane, and n-decane, respectively. Rates of up to 30 mmol L-1 h-1 were observed under octane-limiting conditions in systems where the apolar substrate was dissolved to concentrations below 3% (v/v) in hexadecene. Based on low power input experiments, we estimated the maximum obtainable mass transfer rates in large scale processes to be in the range of 13 mmol L-1 h-1 for decane and higher than 45 mmol L-1 h-1 for octane and heptane. The results indicate that high solvent to cell mass transfer rates and minimized cell damage will enable high production rates in two-liquid phase bioprocesses, justifying ongoing efforts to attain high densities of catalytically, highly active cells in such systems. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

19.
Ajuga bracteosa is a medicinally important plant globally used in the folk medicine against many serious ailments. In the present study, effects of two significant elicitors, methyl jasmonate (Me-J) and phenyl acetic acid (PAA) were studied on growth parameters, secondary metabolites production, and antioxidant potential in adventitious root suspension cultures of A. bracteosa. The results showed a substantial increase in biomass accumulation, exhibiting longer log phases of cultures growth in response to elicitor treatments, in comparison to control. Maximum dry biomass formation (8.88 DW g/L) was recorded on 32nd day in log phase of culture when  0.6 mg/L Me-J was applied; however, PAA at 1.2 mg/L produced maximum biomass (8.24 DW g/L) on day 40 of culture.  Furthermore, we observed the elicitors-induced enhancement in phenolic content (total phenolic content), flavonoid content (total flavonoid content) and antioxidant activity (free radical scavenging activity) in root suspension cultures of A. bracteosa. Application of 0.6 mg/L and 1.2 mg/L of Me-J, root cultures accumulated higher TPC levels (3.6 mg GAE/g DW) and (3.7 mg GAE/g DW) in the log phase and stationary phase, respectively, while 2.5 mg/L Me-J produced lower levels (1.4 mg GAE/g DW) in stationary phase of growth stages. Moreover, TFC and FRSA values were found in correspondence to TPC values in the respective growth phases at the similar elicitor treatment. Thus, a feasible protocol for establishment of adventitious roots in A. bracteosa was developed and enhancement in biomass and metabolite content in adventitious root was promoted through elicitation.  相似文献   

20.
在确定了最适接种量和外植体细胞生理时间的基础上,研究了在不同起始磷浓度下,霍山石斛类原球茎生长、碳、氮消耗和多糖积累的动力学特性。以生长30d的类原球茎为材料,在接种量为100g/L时,类原球茎生长的最佳起始磷浓度为2.5mmol/L,培养36d时,类原球茎鲜重达496.5g/L。动力学分析表明,磷是霍山石斛类原球茎生长的限制性因素,胞内磷的积累水平与细胞生长具有相关性,2.5mmol/L的磷酸盐有利于碳、氮等营养物质的吸收;而多糖积累的最佳起始磷浓度为0.312mmol/L,培养36d时,其产量为2.22g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号