首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the relationship between fetal O2 consumption and fetal breathing movements, we measured O2 consumption, umbilical blood flow, and cardiovascular and blood gas data before, during, and after fetal breathing movements in conscious chronically catheterized fetal lambs. During fetal breathing movements, O2 consumption increased by 30% from a control value of 7.7 +/- 0.7 (SE) ml X min-1 X kg-1. Umbilical blood flow was 210 +/- 21 ml X min-1 X kg-1 before fetal breathing movements; in 9 of 16 samples it increased by 52 +/- 12 ml X min-1 X kg-1, while in the other 7 it decreased by 23 +/- 9 ml X min-1 X kg-1. Umbilical arterial and venous O2 partial pressures and pH fell during fetal breathing movements, and the fall was greater when umbilical blood flow was decreased. Partial CO2 pressure rose in both vessels, and again the increase was greatest when umbilical blood flow fell during fetal breathing movements. Also associated with a fall in umbilical blood flow was the transition from low-amplitude irregular to large-amplitude regular fetal breathing movements. It is concluded that fetal breathing movements increase fetal O2 demands and are associated with a transient deterioration in fetal blood gas status, which is most severe during large-amplitude breathing movements.  相似文献   

2.
Blood flow to the placenta and lower body of control and growth retarded (IUGR) guinea pig fetuses was measured between 60-64 days of pregnancy by the microsphere technique. Further information about the hepatic blood supply and its interlobular distribution was obtained by injecting microspheres into the umbilical vein and a branch of the portal vein. Liver weight was reduced by 60% in IUGR fetuses from 5.0 +/- 0.2 to 2.0 +/- 0.1 g, compared to a decrease in body weight of 50% from 91.6 +/- 3.0 to 45.4 +/- 2.6 g. In addition, there was a proportionately greater reduction in the size of the right liver lobe. Umbilical blood flow was 10.8 +/- 1.0 ml min-1 in control fetuses and 4.9 +/- 1.2 ml.min-1 in IUGR fetuses, whilst blood flow in the portal vein was reduced from 1.4 +/- 0.1 to 0.8 +/- 0.3 ml min-1 and that in the hepatic artery from 0.6 +/- 0.1 to 0.3 +/- 0.1 ml.min-1. Since ductus venosus flow was absent or negligible, the umbilical venous return accounted for greater than 80% of the hepatic blood supply in both control and IUGR fetuses. Blood flows were, however, unequally distributed between the liver lobes. The right lobe was supplied mainly by the portal vein in IUGR fetuses as well as the controls, and received less than 6% of the umbilical venous return. No significant change occurred in total liver perfusion, which was 2.8 +/- 0.2 ml min-1 per g in control fetuses and 2.6 +/- 0.4 ml min-1 per g in IUGR fetuses. It is therefore suggested that a high rate of liver metabolism is maintained in IUGR, but by a smaller tissue mass, and that the rate of umbilical blood flow may be one factor determining the size of the liver. The relatively greater reduction in size of the right lobe in IUGR is probably the result of poor oxygenation of the portal venous blood.  相似文献   

3.
Arterial baroreceptors reflexly regulate sympathetic and heart rate responses to alteration of blood pressure. The primary mechanical determinant of arterial baroreceptor activity in humans remains unclear. We examined the influence of systolic, diastolic, pulse, and mean arterial pressures on efferent muscle sympathetic nerve activity (MSNA, microneurography) and heart rate responses during perturbation of arterial pressure in 10 normal human subjects [age 25 +/- 2 (SE) yr]. We directly measured arterial pressure, heart rate, and MSNA during intravenous vasodilator infusion (nitroprusside, 6 +/- 1 micrograms.kg-1.min-1, n = 6; or hydralazine, 16 +/- 2 mg, n = 4) while central venous pressure was held constant by simultaneous volume expansion. Changes in arterial pressures were compared with changes in heart rate and MSNA over 3-min periods of vasodilator infusion during which we observed increases in systolic and pulse pressures with simultaneous decreases in mean and diastolic pressures. During vasodilator infusion, there were increases in systolic (124.2 +/- 2.1 to 131.7 +/- 2.9 Torr, P less than 0.001) and pulse pressures (57.0 +/- 2.2 to 72.7 +/- 2.7 Torr, P less than 0.001) although mean arterial pressure fell (88.0 +/- 2.6 to 80.4 +/- 2.7 Torr, P less than 0.001) because of decreases in diastolic pressure (67.2 +/- 3.0 to 59.0 +/- 2.7 Torr, P less than 0.001). The changes in arterial pressures were accompanied by simultaneous increases in heart rate (66.4 +/- 3.0 to 92.6 +/- 4.8 beats/min, P less than 0.001) and MSNA (327 +/- 59 to 936 +/- 171 U, P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140-60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Portal infusion of glucose at rates approximating endogenous glucose production (EGP) causes paradoxical hypoglycemia in wild-type but not GLUT2 null mice, implying activation of a specific portal glucose sensor. To determine whether this occurs in humans, glucose containing [3-3H]glucose was infused intraduodenally at rates of 3.1 mg. kg-1. min-1 (n = 5), 1.55 mg. kg-1. min-1 (n = 9), or 0/0.1 mg. kg-1. min-1 (n = 9) for 7 h in healthy nondiabetic subjects. [6,6-2H2]glucose was infused intravenously to enable simultaneous measurement of EGP, glucose disappearance, and the rate of appearance of the intraduodenally infused glucose. Plasma glucose concentrations fell (P < 0.01) from 90 +/- 1 to 84 +/- 2 mg/dl during the 0/0.1 mg. kg-1. min-1 id infusions but increased (P < 0.001) to 104 +/- 5 and 107 +/- 3 mg/dl, respectively, during the 1.55 and 3.1 mg. kg-1. min-1 id infusions. In contrast, insulin increased (P < 0.05) during the 1.55 and 3.0 mg. kg-1. min-1 infusions, reaching a peak of 10 +/- 2 and 18 +/- 5 micro U/ml, respectively, by 2 h. Insulin concentrations then fell back to concentrations that no longer differed by study end (7 +/- 1 vs. 8 +/- 1 micro U/ml). This resulted in comparable suppression of EGP by study end (0.84 +/- 0.2 and 0.63 +/- 0.1 mg. kg-1. min-1). Glucose disappearance was higher (P < 0.01) during the final hour of the 3.1 than 1.55 mg. kg-1. min-1 id infusion (4.47 +/- 0.2 vs. 2.6 +/- 0.1 mg. kg-1. min-1), likely because of the slightly, but not significantly, higher glucose and insulin concentrations. We conclude that, in contrast to mice, selective portal glucose delivery at rates approximating EGP does not cause hypoglycemia in humans.  相似文献   

6.
The present study was designed to determine the plasma clearance rate of atrial natriuretic factor (ANF) during development in chronically-instrumented fetal, newborn and adult non-pregnant sheep. To determine the contribution of the kidney in the metabolism of ANF, urinary clearance of ANF was also measured. Intravenous infusion of ANF (0.025 and 0.1 microgram.min-1.kg-1) produced a significant decrease in mean arterial blood pressure in newborn lambs and in adult non-pregnant sheep. Estimated plasma ANF clearance rate for the 0.025 and 0.1 microgram.min-1.kg-1 ANF infusion rate were respectively 177 +/- 55 and 155 +/- 34 ml.min-1.kg-1 in fetuses, 138 +/- 26 and 97 +/- 13 ml.min-1.kg-1 in newborn lambs and, 148 +/- 33 and 103 +/- 25 ml.min-1.kg-1 in adult nonpregnant ewes. Fetal, newborn and adult ANF plasma clearance rates during high ANF infusion rate (0.1 microgram.min-1.kg-1) were not significantly different. Low or high ANF infusion rate was not associated with significant changes in urinary ANF concentration or urinary ANF excretion rate. Taken together, the present study demonstrates that ANF plasma clearance rate is similar in fetal, newborn and adult non-pregnant sheep and that the excretory function of the kidney contributes only minimally to ANF plasma clearance rate.  相似文献   

7.
We determined maximal exercise capacity and measured hemodynamics in 10 6-wk-old lambs with an aortopulmonary left-to-right shunt [S, 57 +/- 11%, (SD)] and in 9 control lambs (C) during a graded treadmill test 8 days after surgery. Maximal exercise capacity (3.7 +/- 0.2 km/h and 10 +/- 5% inclination vs. 4.0 +/- 0.9 km/h and 15 +/- 0% inclination, P less than 0.02) and peak oxygen consumption (25 +/- 7 vs. 34 +/- 8 ml O2.min-1.kg-1, P less than 0.02) were both lower in the shunt than in the control lambs. This was due to a lower maximal systemic blood flow in the shunt lambs (271 +/- 38 vs. 359 +/- 71 ml.min-1.kg-1, P less than 0.01). Despite their high maximal left ventricular output, which was higher than in the control lambs (448 +/- 87 vs. 359 +/- 71 ml.min-1.kg-1, P less than 0.05), the left-to-right shunt could not be compensated for during maximal exercise because of a decreased reserve in heart rate (S: 183 +/- 22 to 277 +/- 38 beats/min; C: 136 +/- 25 to 287 +/- 29 beats/min) and in left ventricular stroke volume (S: 1.8 +/- 0.3 to 1.6 +/- 0.4 ml/kg; C: 1.0 +/- 0.3 to 1.3 +/- 0.2 ml/kg). We conclude that exercise capacity of shunt lambs is lower than that of control lambs, despite a good left ventricular performance, because a part of the reserves for increasing the left ventricular output is already utilized at rest.  相似文献   

8.
It has been proposed that an increase in the affinity of hemoglobin for O2 may be beneficial in severe hypoxemia. To test this hypothesis, we compared the response to progressive hypoxemia in dogs with normal hemoglobin affinity (P50 = 32.4 +/- 0.7 Torr) to dogs with a left shift of the oxyhemoglobin dissociation curve (P50 = 21.9 +/- 0.5 Torr) induced by chronic oral administration of sodium cyanate. Animals were anesthetized, paralyzed, and mechanically ventilated. The inspired O2 fraction was progressively lowered by increasing the inspired fraction of N2. The lowest level of O2 transport required to maintain base-line O2 consumption (VO2) was 9.3 +/- 0.8 ml.min-1.kg-1 for control and 16.5 +/- 1.1 ml.min-1.kg-1 for the sodium cyanate-treated dogs (P less than 0.01). Other measured parameters at this level of O2 transport were, for experimental vs. control: arterial PO2 19.3 +/- 2.4 (SE) Torr vs. 21.8 +/- 1.6 Torr (NS); arterial O2 content 10.0 +/- 1.2 ml/dl vs. 4.9 +/- 0.4 ml/dl (P less than 0.01); mixed venous PO2 14.0 +/- 1.5 Torr vs. 13.8 +/- 1.0 Torr (NS); mixed venous O2 content 6.8 +/- 1.0 ml/dl vs. 2.3 +/- 0.2 ml/dl (P less than 0.01); and O2 extraction ratio 32.7 +/- 2.8% vs. 51.2 +/- 3.8% (P less than 0.01). We conclude that chronic administration of sodium cyanate appears to be detrimental to O2 transport, since the experimental dogs were unable to increase their O2 extraction ratios to the same level as control, thus requiring a higher level of O2 transport to maintain their base-line VO2 values.  相似文献   

9.
The present study investigates the integrity of the blood-brain barrier to H+ or HCO3- during acute plasma acidosis in 35 newborn piglets anesthetized with pentobarbital sodium. Cerebrospinal fluid acid-base balance, cerebral blood flow (CBF), and cerebral oxygenation were measured after infusion of HCl (0.6 N, 0.191-0.388 ml/min) for a period of 1 h at a constant arterial PCO2 of 35-40 Torr. HCl infusion resulted in decreased arterial pH from 7.38 +/- 0.01 to 7.00 +/- 0.02 (P less than 0.01). CBF measured by the tracer microsphere technique was decreased by 12% from 69 +/- 6 to 61 +/- 4 ml.min-1.100 g-1 (P less than 0.05). Infusion of 0.6 N NaCl as a hypertonic control had no effect on CBF. Cerebral metabolic rate for O2 and O2 extraction was not significantly changed from control (3.83 +/- 0.20 ml.min-1.100 g-1 and 5.7 +/- 0.6 ml/100 ml, respectively) during acid infusion. Cerebral venous PO2 was increased from 41.6 +/- 2.1 to 53.8 +/- 4.0 Torr by HCl infusion (P less than 0.02) associated with a shift in O2-hemoglobin affinity of blood in vivo from 38 +/- 2 to 50 +/- 1 Torr. Cisternal cerebrospinal fluid pH decreased from 7.336 +/- 0.014 to 7.226 +/- 0.027 (P less than 0.005), but cerebrospinal fluid HCO3- concentration was not changed from control (25.4 +/- 1.0 meq/l). These data suggest that there is a functional blood-brain barrier in newborn piglets, that is relatively impermeable to HCO3- or H+ and maintains cerebral perivascular pH constant in the face of acute severe arterial acidosis. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59-73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.  相似文献   

11.
In 30 experiments performed on 5 pregnant sheep, the rate of glucose transfer from the placenta to fetus via the umbilical circulation was measured while varying uterine blood flow by means of a cuff-type occluder and while maintaining a constant maternal glucose concentration by means of a 'glucose clamp'. Over the range of uterine blood flows obtained, there was no significant effect on the simultaneously measured umbilical blood flow. Fetal glucose uptake and arterial glucose concentration remained normal as the uterine blood flow rate decreased from 600 to 300 ml per min per kg of fetus. At blood flow rates less than 300 ml.min-1.kg-1, the fetal glucose uptake decreased and became negative in one instance while the arterial glucose concentration became variable and markedly increased in 2 animals. This increase in fetal glucose concentration was associated with a decrease in the uterine oxygen delivery rate, a decrease in fetal oxygen content and a decrease in fetal oxygen uptake. These observations support the concept that fetal glucose metabolism is altered by severe hypoxia and demonstrate that there is little effect of uterine blood flow on fetal glucose uptake in the normal physiological range.  相似文献   

12.
Oxygen consumption (VO2) was measured during hypoventilation induced by moderate-sized flow-resistive loading in 12 preterm infants, and the results were compared with those obtained under basal conditions immediately before and after the loaded run, each of which lasted for 7-10 min. Loading was performed with a continuous flow-resistive load (inspiratory and expiratory), which was approximately threefold greater in magnitude than the intrinsic resistance of preterm infants. VO2, minute ventilation (VE), transcutaneous oxygen tension (PtCO2), and transcutaneous carbon dioxide tension (PtcCO2) were continuously monitored. Results revealed that VE decreased significantly with loading, from 336 +/- 103 to 231 +/- 58 (SD) ml.min-1.kg-1 (P less than 0.001), while returning to basal levels of 342 +/- 59 ml.min-1.kg-1 after discontinuation of the load. VO2 decreased from 7.2 +/- 1.2 to 5.9 +/- 0.9 ml.min-1.kg-1 with loading (P less than 0.001) and returned to 7.2 +/- 1.2 ml.min-1.kg-1 at the second basal measurement. PtcCO2 remained unchanged with loading, and PtcCO2 only increased from 39 +/- 8 to 41 +/- 9 Torr (P less than 0.05) with loading, while returning to 40 +/- 9 Torr at the second basal measurement. Results indicate a decrease in the metabolic rate and ventilation with loading, with relatively little increase in PtcCO2. These data can explain prior observations that minimal disturbances in oxygen and carbon dioxide tensions occur with hypoventilation during flow-resistive loading in neonates, although the precise mechanism for this reduction remains to be determined.  相似文献   

13.
Influence of alpha-tocopherol on PGI2 synthesis by rat arterial and myometrial tissues was investigated using a rat platelet antiaggregatory bioassay. Chronic administration of alpha-tocopherol to female rats (10 mg kg-1 day-1 s.c. for 14 days) significantly increased ex-vivo PGI2 synthesis by the arterial tissue from 12.7 +/- 0.3 (control, mean +/- s.e.m) to 17.2 +/- 0.4 ng PGI2 mg-1 wet tissue and by the myometrial tissue (in proestrus) from 1.1 +/- 0.07 (control) to 1.85 +/- 0.1 ng PGI2 mg-1 wet tissue (P less than 0.05, n = 6). alpha-tocopherol (5 mg kg-1 day-1 for 14 days) did not stimulate PGI2 to any significant level. Pretreatment of male rat arterial tissue with alpha-tocopherol (0.02, 0.1 or 0.2 mM) in vitro increased PGI2 synthesis in a dose-dependent manner. At a dose of 0.2 mM it increased PGI2 synthesis from 13.70 +/- 0.70 (control) to 22.6 +/- 1.4 ng PGI2 mg-1 wet tissue (P less than 0.1, n = 6). Pre-treatment of 14-day pregnant rat myometrium with alpha-tocopherol 0.2 and 0.4 mM significantly increased PGI2 synthesis from 1.2 +/- 0.06 (control) to 1.90 +/- 0.12 and 2.1 +/- 0.1 ng PGI2 mg-1 wet tissue, respectively (P less than 0.05, n = 6). The results indicate that the ability of alpha-tocopherol to stimulate PGI2 synthesis may partly contribute towards better understanding of the mechanisms that underly the protective effect of alpha-tocopherol against experimentally induced decreases in coronary flow and intravascular coagulations in some mammals. Furthermore adequate intake of alpha-tocopherol during pregnancy may enhance uterine blood flow and ensure adequate foetal nutrition.  相似文献   

14.
Impaired glucose tolerance develops in normal humans after short-term bed rest. To elucidate the mechanism, insulin action on whole body glucose uptake rate (WBGUR) and leg glucose uptake rate (LGUR) was measured by sequential euglycemic clamp technique combined with femoral arterial and venous cannulation at insulin concentrations of 10 +/- 1, 18 +/- 1, 37 +/- 2, and 360 +/- 15 microU/ml. Studies were performed before (C) and after (BR) 7 days of strict bed rest. WBGUR was significantly lower after bed rest than before (5.5 +/- 0.4 and 7.2 +/- 0.8 mg.min-1.kg-1, respectively) when insulin was 37 microU/ml. LGUR was even more markedly depressed by bed rest, being 0.6 +/- 0.1, 0.9 +/- 0.2, and 2.8 +/- 0.4 mg.min-1.kg leg-1 (BR) compared with 0.9 +/- 0.1, 1.7 +/- 0.4, and 5.9 +/- 0.5 mg.min-1.kg leg-1 (C) (P less than 0.05) at the three lower insulin concentrations. At these insulin concentrations also, lactate release and glucose oxidation and glycogen storage estimated by indirect calorimetry were lower in the leg after bed rest. At the highest insulin dose WBGUR was similar on BR and C days, while LGUR was lower after bed rest. In conclusion, 7 days of bed rest decrease whole body insulin action, a fact that is explained by decreased insulin action in inactive muscle.  相似文献   

15.
The role of thermoregulatory background in the baroreceptor reflex control of the tail circulation was investigated 1) in anesthetized rats with a constant flow technique and 2) in conscious rats by measuring tail blood flow (venous occlusion plethysmography). In series I, during normothermia, systemic intravenous phenylephrine infusion increased mean arterial pressure (MAP) by 61.0 +/- 3.6 mmHg and induced a reflex decrease in tail perfusion pressure (TPP) from 105.0 +/- 6.3 to 84.2 +/- 4.4 mmHg (P less than 0.005). Hyperthermia decreased TPP to 66.5 +/- 5.1 mmHg (P less than 0.001) and abolished the TPP response to increased MAP (P greater than 0.05). Increases in MAP via systemic infusion of whole blood caused reductions in TPP during normothermia but failed to reduce TPP further during hyperthermia. Graded decreases in MAP during both normothermia and hyperthermia caused tail vasoconstriction. The increase in TPP was greater (P less than 0.025) during hyperthermia. In series II, conscious animals showed similar responses to hemorrhage. Graded decreases in MAP produced graded decreases in tail vascular conductance (TVC, ml.100 ml-1.min-1.100 mmHg-1). The slope of the TVC-MAP relationship averaged 0.011 +/- 0.003 TVC U/mmHg during normothermia and was markedly steeper (P less than 0.01) during hyperthermia (1.99 +/- 0.39 TVC U/mmHg). Thus the participation of the cutaneous vasculature of the rat in baroreceptor reflexes depends on thermal status, probably through the level of background sympathetic vasoconstrictor nerve activity.  相似文献   

16.
Lactate is produced by the sheep placenta and is an important metabolic substrate for fetal sheep. However, lactate uptake and release by the fetal liver have not been assessed directly. We measured lactate flux across the liver in 16 fetal sheep at 129 (120-138) days gestation that had catheters chronically maintained in the fetal descending aorta, inferior vena cava, right or left hepatic vein, and umbilical vein. Lactate and hemoglobin concentrations and oxygen saturation were measured in blood drawn from all vessels. Umbilical venous, portal venous, and hepatic blood flow were measured by injecting radionuclide-labeled microspheres into the umbilical vein while obtaining a reference sample from the descending aorta. We found net hepatic uptake of lactate (5.0 +/- 4.4 mg/min per 100 g liver). A large quantity of lactate was delivered to the liver (94.2 +/- 78.1 mg/min per 100 g), so that the hepatic extraction of lactate was only 7.7 +/- 6.5%. Hepatic oxygen consumption was 3.18 +/- 3.3 ml/min per 100 g, and the hepatic lactate/oxygen quotient was 2.07 +/- 1.54. There was no significant correlation between hepatic lactate uptake and hepatic lactate or glucose delivery, hepatic oxygen consumption, hepatic blood flow, hepatic glucose flux, total body oxygen consumption, arterial pH, oxygen content, or oxygen saturation. There was, however, a significant correlation between hepatic lactate uptake and umbilical lactate uptake (r = 0.74, P less than 0.005) such that net hepatic lactate uptake was nearly equivalent to that produced across the umbilical-placental circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We evaluated whether acute anemia results in altered blood glucose utilization during sustained exercise at 26.8 m/min on 0% grade, which elicited approximately 60-70% maximal O2 consumption. Acute anemia was induced in female Sprague-Dawley rats by isovolumic plasma exchange transfusion. Hemoglobin and hematocrit were reduced 33% by exchange transfusion to 8.6 +/- 0.4 g/dl and 26.5 +/- 1%, respectively. Glucose kinetics were determined by primed continuous infusion of [6-3H]glucose. Rates of O2 consumption were similar during rest (pooled means 25.1 +/- 1.8 ml.kg-1.min-1) and exercise (pooled means 46.8 +/- 3.0 ml.kg-1.min-1). Resting blood glucose and lactate concentrations were not different in anemic animals (pooled means 5.1 +/- 0.2 and 0.9 +/- 0.02 mM, respectively). Exercise resulted in significantly decreased blood glucose (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and elevated lactate (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM) concentrations in anemic animals. Glucose turnover rates (Rt) were not different between anemic and control animals at rest and averaged 58.8 +/- 3.6 mumol.kg-1.min-1. Exercise resulted in a 30% greater increase in Rt in anemic (141.7 +/- 3.2 mumol.kg-1.min-1) than in control animals (111.2 +/- 5.2 mumol.kg-1.min-1). Metabolic clearance rates (MCR = Rt/[glucose]) were not different at rest (11.6 +/- 7.4) but were significantly greater in anemic (55.2 +/- 5.7 ml.kg-1.min-1) than in control animals (24.3 +/- 1.4 ml.kg-1.min-1) during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Well oxygenated blood returning from the placenta is preferentially shunted into the left side of the fetal heart and the ascending aorta. This results in higher oxygen saturation in arterial blood supplying the fetal upper body than in blood supplying the lower body. Since the placenta is also the site of nutrient and waste exchange, we evaluated differences in arterial concentrations of nutrients and waste products in fetal upper and lower body. Studies were carried out on ten, chronically catheterized, third trimester, fetal sheep. Blood samples, drawn simultaneously from the carotid and femoral arteries, were analyzed for glucose, oxygen saturation, oxygen content, total amino acids, lactate, urea nitrogen, and hydrogen ion concentration. Carotid arterial blood had higher levels of glucose (1.4 +/- 0.1 mg/dl (SEM); P less than 0.001), of alpha-amino nitrogen (0.4 +/- 0.1 mg/dl, equivalent to amino acid concentration difference of 2.5 mg/dl, P less than 0.025), of oxygen saturation (9.9 +/- 0.5%, P less than 0.001), and of oxygen content (1.0 +/- 0.1 ml/dl; P less than 0.001). Carotid values exceeded femoral by an average of 10% for glucose, 4% for amino nitrogen, 29% for oxygen saturation and 23% for oxygen content. Carotid arterial blood had lower urea nitrogen, (-0.5 +/- 0.2 mg/dl; P less than 0.05) and hydrogen ion (-1.1 +/- 0.1 nM/L; P less than 0.001) concentrations, but these differences averaged only 2% between vessels. Lactate concentration in the carotid and femoral arteries was the same. Fetal glucose and oxygen levels were closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Glucose clamp experiments were performed in 27 chronically catheterized, late-gestation fetal lambs in order to measure the effect of fetal insulin concentration on fetal glucose uptake at a constant glucose concentration. Fetal arterial blood glucose concentration was measured over a 30-min control period and then maintained at the control value by a variable glucose infusion into the fetus while insulin was infused at a constant rate into the fetus. Plasma insulin concentration increased from 21 +/- 10 (SD) to 294 +/- 179 (SD) microU X ml-1. The exogenous glucose infusion rate necessary to maintain constant glycemia during the plateau hyperinsulinemia averaged 4.3 +/- 1.6 (SD) mg X min-1 X kg-1. In a subset of 13 animals, total fetal exogenous glucose uptake (FGU; sum of glucose uptake from the placenta via the umbilical circulation plus the steady-state exogenous glucose infusion rate) was measured during the control and hyperinsulinemia period. FGU was directly related to insulin concentration (y = 4.24 + 0.07x) at insulin levels less than 100 microU/ml and increased 132% above control at insulin levels above 100 microU/ml. Hyperinsulinemia did not affect fetal glucose uptake from the placenta via the umbilical circulation. These studies demonstrate that insulin concentration is a major factor controlling glucose uptake in the near-term fetal lamb, and that an increase of fetal insulin does not affect the transport of glucose to the fetus from the placenta.  相似文献   

20.
The effects of moderate fetal asphyxia, induced by constriction of the maternal common internal iliac artery, on lung liquid secretion, tracheal fluid efflux and lung liquid volume have been investigated in unanaesthetized fetal sheep (111-142 days) in utero. During periods of fetal asphyxia the percent oxygen saturation, PO2, pH, and PCO2 of fetal carotid arterial blood changed from 57.2 +/- 1.3% (mean +/- SEM), 22.9 +/- 0.6 mmHg, 7.35 +/- 0.01 and 45.6 +/- 1.0 mmHg to 26.3 +/- 0.5% (P less than 0.001), 14.7 +/- 0.2 mmHg (P less than 0.001), 7.28 +/- 0.02, (P less than 0.001) and 47.8 +/- 0.4 mmHg (P less than 0.02), respectively. Fetal asphyxia, over 6 h, decreased the efflux of tracheal fluid from 7.07 +/- 0.47 ml/h to 3.97 +/- 0.36 ml/h (P less than 0.01) and, over 4 h, decreased the rate of lung liquid secretion from 9.42 +/- 1.76 ml/h to 4.91 +/- 1.54 ml/h (P less than 0.005), whereas it had no significant effect on lung liquid volume. The incidence of fetal breathing movements decreased from 52.9 +/- 2.5% to 22.6 +/- 3.5% during 6-h periods of fetal asphyxia. Thus, although fetal asphyxia decreased the net production of lung liquid, lung liquid volume was maintained probably, because the net efflux of fluid from the lungs via the trachea decreased to a similar extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号