首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
In developing seed ofVicia faba L., solutes imported throughthe phloem of the coats move symplastically from the sieve elementsto a specialized set of cells (the thin-walled parenchyma transfercells) for release to the seed apoplast. Potassium (K+) is thepredominant cation released from the seed coats. To elucidatethe mechanisms of K+ efflux from seed coat to seed apoplast,whole-cell currents across the plasma membranes of protoplastsof thin-walled parenchyma transfer cells were measured usingthe whole-cell patch-clamp technique. Membrane depolarizationelicited a time-dependent and an instantaneous outward current.The reversal potential (ER of the time-dependent outward currentwas close to the potassium equilibrium potential (EK and itshifted in the same direction as EK upon changing the externalK+ concentration, indicating that this current was largely carriedby an efflux of K+. The activation of the time-dependent outwardK+ current could be well fitted by two exponential componentsplus a constant. The instantaneous outward current could alsobe carried by K+ efflux as suggested by ion substitution experiments.These K+ outward rectifier currents elicited by membrane depolarizationare probably too small to represent the mechanism for the normalK+ efflux from seed coat cells. Membrane hyperpolarization morenegative than –80 mV activated a time-dependent inwardcurrent. K+ influx was responsible for the inward current asthe current reversed at membrane voltage close to EK and shiftedin the same direction as EK when external [K+] was varied. Activationof this K+inward rectifier current was well fitted with twoexponential components plus a constant. A regulating functionfor this current is suggested. Key words: Potassium outward rectifier, potassium inward rectifier, transfer cell protoplast, seed coat, Vicia faba L  相似文献   

2.
After removal of the embryo from developing seeds of Pisum sativum,the ‘empty’ ovules (seed coats without enclosedembryo) were filled with a solution (pH 5.5) containing mannitol(usually 400 mM) to which various salts were added. A solutioncontaining two isotopes ((a) [2H]-sucrose/[–14C]aminoisobutyricacid (AIB) or (b) [3H]valine/[14C]asparagine mixture) was administeredto the plant via the petiole subtending the fruiting node, and[2H]solute and [14C]solute unloading from the seed coat wasmeasured, in pulse-labelling experiments of about 5 h. The presenceof 25 or 50 mM K+ in the ‘empty’ ovule enhancedthe release of sucrose from the seed coat particularly duringthe first hours of the experiment, but the stimulating effectof K+ on the release of labelled solutes derived from aminoacids was much smaller. The presence of 25 mM CaCl2 did notaffect the release of sucrose or amino acids from the seed coat.The effect of K+ on sucrose and amino acid release is explainedas an inhibition of sucrose and amino acid resorption from theseed coat apoplast into seed coat cells, after unloading fromthe seed coat unloading sites. It is suggested that amino acidrelease is much less affected by K+ than sucrose release, becausefar less resorption of amino acids by seed coat parenchyma cellstakes place during amino acid transport into the seed coat cavity. Pisum sativum, pea, assimilate transport, assimilate unloading, seed-coat exudate, seed development, sucrose resorption, surgical treatment  相似文献   

3.
Mechanism of Photosynthate Efflux from Vicia faba L. Seed Coats   总被引:2,自引:0,他引:2  
In order to develop a tentative model of the mechanism of photosynthateefflux from the vascular region of Vicia faba L. seed coats,wash-out experiments were performed after removal of the embryo. The sulphydryl group modifiers, pCMBS and NEM, reduced 14C-photosynthateefflux by 40% and 50%, respectively. Their inhibitory effectcould be prevented or reduced (in the latter case) by includingDTT in the bathing solution. Maltose competed with sucrose forefflux; a concentration of 300 mol m–3 inhibited 14C-photosynthaterelease by 35%. The cations K+ , Na+ Mg2+ and TPP+ enhancedefflux significantly, whereas the countenon Cl had noeffect. The presence of the protonophore CCCP (0·1 molm–3) led to a reduction of efflux by 50% net proton extrusiondropped by 34%. To a lesser extent, an efflux inhibition wasalso achieved by decreasing the cytoplasmic pH with the weakacid DM0. In contrast, alterations in the external pH causedonly a feeble response. The ATPase inhibitor, EB, decreasedphotosynthate efflux and H+ extrusion. DES reduced efflux slightly,presumably by affecting ATPase activity as well as energy metabolism. Based on these findings, it is proposed that a sucrose/protonantiport mechanism could be responsible for photosynthate effluxfrom Vicia faba seed coats. Key words: Photosynthate efflux, proton extrusion, proton/sucrose antiport, seed coat, Vicia faba L.  相似文献   

4.
Effluxes of K+ and Ca2+ from root segments of both wheat, Triticunaestivum L. cv. Capelle and mung bean, Vigna radiata (L.) Wilczek,were measured in the presence or absence of 20 mol m–3para-fluorophenylalanine (p-FPA). The results were used to estimatethe compartment contents and transmembrane K+ and Ca2+ fluxesin root cortex cells. Using the Ussing-Teorell flux equationas the criterion, it was concluded that entry of K+ from theoutside solution to the cytoplasm, and from the cytoplasm tothe vacuole were active in both wheat and mung bean. Also, inboth species, Ca2+ entered the cytoplasm passively across theplasmalemma and was actively pumped back to the external solution.However, interpretation of the direction of active transportacross the tonoplast depends upon an assumption about Ca2+ activityin the cytoplasm. The only qualitative effect of p-FPA was to alter the drivingforce for K+ influx, across the plasmalemma in wheat, from anactive to a passive one. Quantitative effects of the analoguewere seen for K+ fluxes in both wheat and mung bean and forCa2+ fluxes in wheat. The p-FPA reduced transport of K+ in bothspecies, while transport of Ca2+ was unaffected. The implicationsof these results for the ‘two pump hypothesis’ arediscussed. Key words: Triticum aestivum, Vigna radiata, Two pump hypothesis  相似文献   

5.
Simultaneous measurements of the extracellular potential andthe K+(86Rb) efflux, and of the intracellular and extracellularpotentials of the cortical cells were used to study the effectsof external Ca2+ on the plasma membrane K+(86Rb) permeabilityin two-day-old mung bean (Vigna mungo L. Hepper, ‘Blackmatpe’) roots under high KCl stress. The K+ efflux wasenhanced by a high KCl solution (>7.5 mM), and addition of0.5 mM Ca2+ could suppress this efflux. The removal of membrane-associatedCa+ from the root surface with EDTA led to a recovery of theK+ efflux along with a marked decrease in the extracellularpotential. (Received November 19, 1986; Accepted March 6, 1987)  相似文献   

6.
Using the compartmental analysis the unidirectional Na+ fluxesin cortical cells of barley roots, the cytoplasmic and vacuolarNa+ contents Qc and Qv, and the trans-root Na+ transport R'have been studied as a function of the external Na+ concentration.Using the re-elution technique the effect of low K+ concentrationson the plasmalemma efflux co of Na+ (K+-Na+ exchange) and onR' was investigated at different Na+ concentrations and correspondinglydifferent values of the cytoplasmic sodium content Qc. The relationof the K+-dependent Na+ efflux coK+-dep to Qc or to the cytoplasmicNa+ concentration obeyed Michaelis-Menten kinetics. This isconsistent with a linkage of co, K+-dep to K+ influx by a K+-Na+exchange system. The apparent Km corresponded to a cytoplasmicNa+ concentration of 28 mM at 0·2 mM K+ and about 0·2mM Na+ in the external solution. 0·2 mM K+ stimulatedthe plasma-lemma efflux of Na+ and inhibited Na+ transport selectivelyeven in the presence of 10 mM Na+ in the external medium showingthe high efficiency of the K+-Na+ exchange system. However,co, K+-dep was inhibited at 10 mM Na1 compared to lower Na1concentrations suggesting some competition of Na1 with K1 atthe external site of the exchange system. The effect of theNa+ concentration on Na1 influx oc is discussed with respectto kinetic models of uuptake.  相似文献   

7.
Guttation was used as a non-destructive way to study the flowof water and mineral ions from the roots and compared with parallelmeasurements of root exudation. Guttation of the leaves of barley seedlings depends on age andon the culture solution. Best rates of guttation were obtainedwith the primary leaves of 6- to 7-day-old seedlings grown onfull mineral nutrient solution. The growing leaf tissue becomessaturated with K+ below 1.5 mM K+ in the medium, whereas K+concentration in the guttated fluid still increases furtheras K+ concentration in the medium is raised. At 3 mM K+ averagevalues of guttation were 1.4–2.4 mm3 h–1 per plantwith a K+ concentration of 10–20 mM; for exuding plantsthe flow was 4.2–7.6 mm3 h–1 per plant and K+ concentration35–55 mM. Abscisic acid (ABA) at 10–6 to 10–4 M 0–2h after addition to the root medium increased volume flow ofguttation and exudation and the amount of K+ exported. Threeh after addition of ABA both volume and amount of K+ were reduced.There was an ABA-dependent increase in water permeability (Lp)of exuding roots shortly after ABA addition. Later Lp was decreasedby 35 per cent and salt export by 60 per cent suggesting aneffect of ABA on salt transport to the xylem apart from itseffect on Lp. Benzyladenine (5 x 10–8 to 10–5 M)and kinetin (5 x 10–6 M) progressively reduced volumeflow and K+ export in guttation and exudation and reduced Lp. Guttation showed a qualitatively similar response to phytohormonesas found here and elsewhere using exuding roots. Hordeum vulgare L., barley, guttation, abscisic acid, cytokinins, benzyl adenine, kinetin  相似文献   

8.
PATRICK  J. W. 《Annals of botany》1987,59(2):181-190
Rates of 14C-photosynthate unloading from excised seed-coathalves of Phaseolus vulgaris L. plants were stimulated by externalKCI concentrations in excess of 10 mM with an optimal responseat 100–150 mM KCI. The cellular pattern of 14C-photosynthatemetabolism was not altered by KCI but the treatment preferentiallystimulated the release of sucrose from the seed-coats. Photosynthateunloading was insensitive to Cl and was stimulated bya range of membrane-permeable cations (Na+, Mg2+ and tetraphenylphosphoniumion) in addition to K+. The K+ ionophore, valinomycin, abolishedthe K+ stimulation of 14C-photosynthate unloading. A switchto a wash solution containing K+ elicited a rapid burst of 14C-photosynthateunloading; the rate constant for the final phase of 14C-efflux(probably across the tonoplast) was unaffected by K+. The KCItreatment did not change the passive permeability of eitherthe plasmalemma or tonoplast. While sucrose influx across theplasmalemma was insensitive to K+, sucrose transfer to the vacuolewas slowed. The results obtained support the postulate thatK+ (and other membrane permeable cations) preferentially stimulatesucrose efflux across the plasmalemma of the unloading cellsby serving to carry positive charge in the opposite direction. Phaseolus vulgaris, bean, photosynthate unloading, potassium stimulation, seed-coat  相似文献   

9.
The uptake of K+ by plant roots is matched to the demand forK+ for growth. The growing shoot must communicate its K+ requirementto the root. It has been suggested that this might be effectedby varying the amount of K+ retranslocated from the shoot tothe root via the phloem. It is predicted that less K+ is returnedto the roots in K+-deficient plants and that this promotes compensatoryK+ uptake from the external medium. These experiments addressthis hypothesis. Rye (Secale cereale L.) was grown hydroponically in completenutrient solutions containing either 100 aM or 400 µMK+. Plant development, shoot fresh weight (FW) and plant drymatter accumulation did not differ between seedlings grown atthese K+ concentrations. However, root FW was lower in seedlingsgrown in solutions containing 100 µM K+, which resultedin a greater shoot/root FW ratio. Seedlings from both treatmentshad similar shoot K+ concentrations, but the root K+ concentrationof seedlings grown In solutions containing 100 µM K+ wasless than their counterparts grown at 400 µM K+. When assayed at the same K+ concentration, unidirectional K+(86Rb+) influx into 14-d-old seedlings grown with 100 µMK+ in the nutrient solution was greater than that into seedlingsgrown with 400 µM K+ in the nutrient solution, indicatingan increased K+ influx capacity in the former. Furthermore,K+ (86Rb+) influx into seedlings grown and assayed at 100 µMK+ was greater than that into seedlings grown and assayed at400 µM K+. Since net K+ uptake was lower in the seedlingsgrown at 100 µM K+, this indicates a greater unidirectionalK+ efflux from roots in solutions containing 100 µM K+. An empirical model, based on the immobility of calcium in thephloem, was used to describe quantitatively K+ fluxes in seedlings14 d after sowing. As primary data, the composition of xylemsap and the accumulation of elements in root and shoot tissueswere determined. Xylem sap was collected either as root-pressureexudate or from excised roots immersed in nutrient solutionand subjected to a pneumatic pressure of 0.4 MPa. The K:Ca ratioin these saps differed, and led to contrasting conclusions concerningthe effect of K+ nutrition on the recirculation of K+. Basedon the K:Ca ratio in the sap obtained following the applicationof pneumatic pressure, which is thought to resemble that ofintact transpiring plants, it was calculated that the K+ fluxfrom the shoot to the root was higher in seedlings maintainedin solutions containing higher K+ concentrations. This suggeststhat a negative feedback mechanism based on K+ recirculationfrom the shoot to the root via the phloem could be a primarysignal decreasing K+ influx. Key words: K+ influx, K+ recirculation, regulation, root, rye, Secale cereale L  相似文献   

10.
Plasma Membrane H+-ATPase in Guard-Cell Protoplasts from Vicia faba L.   总被引:2,自引:0,他引:2  
The activity of plasma membrane H+-ATPase was measured withmembrane fragments of guard-cell protoplasts isolated from Viciafaba L. ATP hydrolytic activity was slightly inhibited by oligomycinand ammonium molybdate, and markedly inhibited by NO3and vanadate. In the presence of oligomycin, ammonium molybdateand NO3, the ATP-hydrolyzing activity was strongly inhibitedby vanadate. It was also inhibited by diethylstilbestrol (DES),p-chloromercuribenzoic acid (PCMB) and Ca2+, but slightly stimulatedby carbonyl cyanide m-chlorophenylhydrazone (CCCP). The acitivityhad higher specificity for ATP as a substrate than other phosphoricesters such as ADP, AMP, GTP and p-nitrophenylphosphate; theKm was 0.5 mM for ATP. The activity required Mg2+ but was notaffected by K+, and it was maximal around pH 6.8. When guard-cellprotoplasts were used instead of membrane fragments, the ATPaseactivity reached up to 800µmol Pi.(mg Chl)–1.h–1in the presence of lysolecithin. These results indicate thatthe guard cell has a high plasma membrane H+-ATPase activity. (Received December 23, 1986; Accepted April 28, 1987)  相似文献   

11.
The extent of post-phloem solute transport through the coatsymplasts of developing seeds of Vicia faba L. and Phaseolusvulgaris L. was evaluated. For Vicia seed coats, the membrane-impermeantfluorochrome, CF, moved radially from the chalazal vein to reachthe chlorenchyma and thin-walled parenchyma transfer cell layers.Thereafter, the fluorochrome moved laterally in these two celllayers around the entire circumference of the seed coat. Transferof CF from the chalazal vein was inhibited by plasmolysis ofattached ‘empty’ seed coats. In contrast, the spreadof phloem imported CF was restricted to the ground parenchymaof Phaseolus seed coats. Fluorochrome loaded into the outermostground parenchyma cell layer was rendered immobile followingplasmolysis of excised seed-coat halves. Phloem-imported [14C]sucroseand the slowly membrane permeable sugar, L-[14C]glucose, werepartitioned identically between the vascular and non-vascularregions of intact Vicia seed coats. For 14C-photosynthates,these partitioning patterns in attached ‘empty’Vicia seed coats were unaffected by PCMBS, but inhibited byplasmolysis. Tissue autoradiographs of intact Phaseolus seedcoats demonstrated that a pulse of 14C-photosynthate moved fromthe veins to the grounds tissues. In excised Vicia seed coats,preloaded with 14C-photosynthates, the cellular distributionof residual 14C-label was unaffected by PCMBS. In contrast,PCMBS caused the 14C-photosynthate levels to be elevated inthe veins and ground parenchyma relative to the branch parenchymaof Phaseolusseed coat halves. Based on the above findings, itis concluded that the phloem of Vicia seed coats is interconnectedto two major symplastic domains; one comprises the chlorenchyma,the other the thin-walled parenchyma plus thin-walled parenchymatransfer cells. For Phaseolusseed coats, the phloem forms amajor symplastic domain with the ground parenchyma. Key words: Phaseolus vulgaris L, phloem unloading, photosynthate transport, seed coat, symplast, Vicia faba L  相似文献   

12.
After removal of the embryo from developing seeds of Vicia fabaL. and Pisum sativum L., the ‘empty’ ovules werefilled with a standard solution (pH 5.5). Seed coat exudatesof both species were collected during relatively long experiments(up to about 12 h) and the concentration of sugar (mainly sucrose),amino acids and phosphate in the exudate measured. A discussionis presented on the amino acid/sugar ratio and the phosphate/sugarratio in the seed coat exudate. A pretreatment (15 min) withp-chloromercuribenzenesulphonic acid (PCMBS) reduced the releaseof sugar, amino acids and phosphate from broad bean seed coats.After excision of ‘empty’ ovules of Vicia faba andPisum sativum from the maternal plant, 2–4 h after thistreatment a strong difference became visible between sucroserelease from excised seed coats and sucrose release from attachedseed coats. Similarly, when the rate of phloem transport ofsucrose into an ‘empty’ ovule of Vicia faba or Pisumsativum was reduced by a sub-optimal mannitol concentrationin the solution, a reduced rate of sugar release from the seedcoat could be observed. Excision and treatment with a sub-optimalmannitol concentration reduced the release of amino acids toa lesser extent than for sucrose. These treatments did not reducethe rate of phosphate release from the seed coat. Key words: Seed development, Seed coat exudate, Phloem transport  相似文献   

13.
Excised seed-coat halves and cotyledons of developing seedsof Pisum sativum L. were incubated in a bathing medium (pH 5·5),in order to measure the release or uptake of sucrose and aminoacids. Net efflux of sucrose and amino acids was reduced bya 250 mol m –3 mannitol solution and a 400 mol m –3solution, in comparison with a 100 mol m–3 control. Thiseffect could not be observed in the case of the amino acid analogue-aminoisobutyric acid (AIB). Net uptake of labelled sucroseor valine by cotyledons and seed coats was enhanced by a highosmolality of the bathing medium. The data on AIB and the datafrom uptake experiments support the view that net efflux ofassimilates is reduced by a high solute concentration in theapoplast (e.g. 400 mol m–3 mannitol), via a stimulationof carrier-mediated sucrose and amino acid uptake into cotyledonaryand seed coat tissues. In experiments with attached empty ovulesof pea in a very early stage of development, sugar release fromthe seed coat was enhanced by a low osmolality of the apoplastsolution (e.g. 100 mol m–3 mannitol, in comparison witha 400 mol m –3 control). This paradoxical effect may beobserved when the stimulatory effect on net assimilate effluxfrom seed coat tissues is exceeding the inhibitory effect onassimilate import into the seed coat. Key words: Seed development, turgor-sensitive transport, assimilate transport  相似文献   

14.
When microsomal membranes from maize (Zea mays L. cv. Clipper)coleoptiles were separated by isopyc-nic centrifugation on acontinuous 10–45% sucrose gradient, bafilomycin A1-inhibitedATPase activity co-localized with the activities of the tonoplastmarker-enzymes, nitrate-Inhibited ATPase and K+-dependent pyrophosphatase.Thus, bafilomycin A1 is a specific inhibitor of the vacuolarH+-ATPase of maize coleoptiles. Inhibition of the vacuolar H+-ATPaseby bafilomycin A1 was strictly dependent upon the concentrationof the enzyme present in the assay medium, suggesting a stoichiometricassociation between bafilomycin A1 and the vacuolar H+-ATPase.In tonoplast-enriched preparations, half-maximal inhibitionwas obtained at 43 pmol bafilomycin A1 mg–1 protein. BafilomycinA1 inhibited the vacuolar H+-ATPase in a simple non-competitivemanner: increasing bafilomycin A1 concentrations reduced theVmax, of the H+ -ATPase, but had no effect on its Km towardsATP. Key words: Bafilomycin A1, coleoptile, H+-ATPase (vacuolar), maize, Zea mays L  相似文献   

15.
Plants can exhibit Fe-deficiency stress response when they areexposed to Fe-deficiency conditions. The relative importanceof the individual Fe-deficiency stress-response reactions, forexample, increased release of H+ from roots, enhanced root plasmamembrane-bound Fe3+ -reductase activity, and release of reductant,in Fe-deficiency resistance is not understood. To address thisproblem, the Fe-deficiency stress response of two cultivarsof subterranean clover (subclover), Koala (Trifolium brachycalycinumKatzn. and Morley) (Fe-deficiency resistant) and Karridale (T.subterraneum L.) (Fe-deficiency susceptible), were evaluated.The plants were cultured hydroponically at 0 (–Fe) and30 (+Fe) µM Fe3+ EDTA conditions. After 6 d Fe treatment,the –Fe Koala and Karridale decreased the pH of the nutrientsolution by 1.83 and 0.79 units, respectively, while the +Feplants increased the pH of the nutrient solution. The H+ -releaserate of the –Fe Koala determined 7 d after Fe treatmentinitiation was more than three times higher than that of the–Fe Karridale. The –Fe plants had a significantlyenhanced Fe3+ -reduction rate compared with the +Fe plants foreach cultivar, but the resistant cultivar did not exhibit ahigher root Fe3+ -reduction rate than the susceptible cultivarat each Fe treatment. Reductant release from the roots of subcloverwas negligible. These results indicate that Fe-deficiency-inducedH+ release may be the predominant factor influencing Fe-deficiencyresistance in subclover. Key words: Fe-deficiency, Fe3+ reduction, H+ release, stress response, Trifolium  相似文献   

16.
This study evaluated the effects of anoxia on K+ uptake andtranslocation in 3–4-d-old, intact, rice seedlings (Oryzasativa L. cv. Calrose). Rates of net K+ uptake from the mediumover 24 h by coleoptiles of anoxic seedlings were inhibitedby 83–91 %, when compared with rates in aerated seedlings.Similar uptake rates, and degree of inhibition due to anoxia,were found for Rb+ when supplied over 1·5–2 h,starting 22 h after imposing anoxia. The Rb+ uptake indicatedthat intact coleoptiles take up ions directly from the externalsolution. Monovalent cation (K+ and Rb+) net uptake from thesolution was inhibited by anoxia to the same degree for thecoleoptiles of intact seedlings and for coleoptiles excised,‘aged’, and supplied with exogenous glucose. Transportof endogenous K+ from caryopses to coleoptiles was inhibitedless by anoxia than net K+ uptake from the solution, the inhibitionbeing 55 % rather than 87 %. Despite these inhibitions,osmotic pressures of sap (sap) expressed from coleoptiles ofseedlings exposed to 48 h of anoxia, with or without exogenousK+, were 0·66 ± 0·03 MPa; however,the contributions of K+ to sap were 23 and 16 %, respectively.After 24 h of anoxia, the K+ concentrations in the basal10 mm of the coleoptiles of seedlings with or without exogenousK+, were similar to those in aerated seedlings with exogenousK+. In contrast, K+ concentrations had decreased in aeratedseedlings without exogenous K+, presumably due to ‘dilution’by growth; fresh weight gains of the coleoptile being 3·6-to 4·7-fold greater in aerated than in anoxic seedlings.Deposition rates of K+ along the axes of the coleoptiles werecalculated for the anoxic seedlings only, for which we assessedthe elongation zone to be only the basal 4 mm. K+ depositionin the basal 6 mm was similar for seedlings with or withoutexogenous K+, at 0·6–0·87 µmolg–1 f. wt h–1. Deposition rates in zones above6 mm from the base were greater for seedlings with, thanwithout, exogenous K+; the latter were sometimes negative. Weconclude that for the coleoptiles of rice seedlings, anoxiainhibits net K+ uptake from the external solution to a muchlarger extent than K+ translocation from the caryopses. Furthermore,K+ concentrations in the elongation zone of the coleoptilesof anoxic seedlings were maintained to a remarkable degree,contributing to maintenance of sap in cells of these elongatingtissues.  相似文献   

17.
The effect of tris, choline, and ethanolamine chlorides on theactivity of Mg2–dependent ATPase in membrane fractions(cell walls, mitochondria, and microsomes) of Zea mays L. (cv.Neve Yaar 22), Avena saliva L. (cv. Mulga), and Hordeum vulgareL. (cv. Omer) was compared with the effect of KC1 and NaCl.Considerable salt effects on apparent Mg2+ATPase activity werefound only at relatively high pH values (8.2) at which Mg2+.ATPaseactivity was low in the absence of monovalent cation salts.The Mg2+-dependent ATP hydrolysis by ATPases from all the membranefractions increased in the presence of at least one of the organiccations to the same extent as in the presence of KCI or NaCl.The monovalent organic cations are only very slowly absorbedby corn roots in comparison with K+ and Na+. It is concluded that monovalent salt effects on ATPase fromthese plant roots are not cation specific and not related tothe capability of root cells to absorb cations. Present evidencefor the existence of a cation-transport ATPase in plant tissueis critically reviewed.  相似文献   

18.
The primary leaves of kidney bean (Phaseolus vulgaris L.) openunder light and close in the dark by the deformation of thepulvinus resulting from diurnal distribution changes of K+,Cl, organic acid (or H+) and NO3. When Rb+ was added as a tracer of K+ to the seedlings throughtheir roots, it was transported to the pulvinus cells duringthe light period but not during the dark period. Transpirationoccurred vigorously in the light but almost stopped in the dark.We concluded that Rb+ absorbed by the roots was carried to thepulvinus by the transpiration stream. Phaseolus vulgaris L., pulvinus, Rb+, diurnal transport transpiration stream  相似文献   

19.
Barley (Hordeum vulgare L.) varieties differed in their raponseto [K+]0, in terms of their utilization efficiencies (UE = freshweight. concentration of [K+]1–1). At low [K+]0, Compana,an efficient-non-responder demonstrated superior utilizationof absorbed K+. On the other hand, at high [K+]0, Fergus (anefficient responder) and BT 334 (an inefficient responder) hadhigher UE values for K+ than Compana which performed poorlyat this [K+]0. Kinetic parameters for K+ activation of the enzyme pyruvatekinase from 12 barley varieties, representing a range of UEvalues, were determined. Varieties showed substantial differencesin their Vmax values (P<0·01). Compana, an efficientvariety, had the highest Vmax (31 µmol g–1 freshwt. h–1) which was about 50% higher than that of Mingo,an inefficient variety. By contrast, Km values for the enzymeswere not significantly different among varieties The mean valuesfor all varieties (3·9±0·15 mol m–3K+) is far below the estimated cytoplasmic [K+] (100-200 molm–3). It is, therefore, unlikely that differences in theutilization of K+ by these varieties can be explained on thebasis of differential requirements for (K+) activation of theseenzymes. Alternative possibilities for differences in the utilizationof K+ are discussed. Key words: K+ utilization efficiency, Pyruvate kinase, Barley varieties  相似文献   

20.
Epidermal-cell protoplasts from rye (Secale cereale L.) rootswere voltage-clamped in both the whole-cell and outside-outmembrane-patch modes. Time-dependent inwardly-rectified (IR)and outwardly-rectified (OR) K+-currents were recorded, as wellas a ubiquitous, timeindependent (instantaneous) K+-current. The IR current activated at voltages more negative than —100mVwith two exponentially rising components. The time-constantof the shorter component was voltage-independent, whereas thetime-constant of the longer component was voltage-dependent,increasing as the activating voltage became more negative. TheIR current showed no inactivation. The IR current deactivatedwith a single exponential timecourse. The steady-state IR currentcould be fitted to a Boltzmann function with —135 mV asthe voltage at which the current was half-maximal and a minimalgating charge of 1.93. These parameters were insensitive tochanges in EK. One component of the IR current was K + , butother ions were also permeable. The IR current was inhibitedby extracellular Ca2+ , Ba2+ , Cs+, and TEA+, but was insensitiveto quinine. Single channels with unitary conductances of 56pS and 110 pS (in c.100 mM K+) were recorded at negative voltages. Two OR currents were observed. One had sigmoidal activationkinetics and activated at low positive voltages. The other activatedmore rapidly, with apparently exponential kinetics, at voltages50–100 mV more positive than the first. Neither currentshowed inactivation and deactivation of OR currents followeda double exponential time-course. Unitary-conductances of thechannels mediating these OR currents were 24 pS and 57 pS (inc.100 mM K+), respectively. Only the first type of OR currentwas studied in detail. This current activated with a sigmoidaltime-course, which could be described using a Hodgkin-Huxleyfunction with the activation variable raised to the second power.Its voltage-dependence was modulated in response to changesin EK and analysis of single-channel recordings indicated thatthe channel was K+-selective. The current was inhibited by Ba2+and TEA+, but not Ca2+, Cs+ or quinine. The instantaneous current was selective for monovalent cationsand K+ , Na+ and Cs+ were all permeant. It was inhibited byextracellular quinine and the instantaneous inward K+-currentwas reduced by extracellular Ca2+, Ba2+ and TEA+, as well asby competing permeant monovalent cations. The kinetics and pharmacology of these currents are comparedwith K+-currents across the plasma membrane of protoplasts fromother root-derived cells and with K+ channels in the plasmamembrane of rye roots studied following incorporation into artificial,planar lipid bilayers. Key words: Ionic currents, patch-clamp, pharmacology, potassium, K+, rye, Secale cereale L  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号