首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Beerhues  H. Robenek  R. Wiermann 《Planta》1988,173(4):532-543
The two chalcone-synthase forms from leaves ofSpinacia oleracea L. were purified to apparent homogeneity. Antibodies were raised against both proteins in rabbits. The specificity of the antibodies was tested using immunotitration, immunoblotting, and immunoelectrophoresis techniques. The antibodies exhibited exclusive specificity for chalcone synthase and did not discriminate between the two antigens. The homodimeric chalcone synthases had the same subunit molecular weight but differed in their apparent native molecular weights. The peptide maps indicated extensive homology between the proteins. Chalcone-synthase activity was not detected in isolated spinach chloroplasts. Both enzyme forms were present in spinach cell-suspension cultures in which they were induced by light.Abbreviations DEAE diethylaminoethyl - DTE 1,4-dithioerythritol - EDTA ethylenediaminetetraacetic acid - HPLC high-performance liquid chromatography - IgG immunoglobulin G - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Parts of the results were presented at the 14th International Botanical Congress at Berlin in July 1987  相似文献   

2.
Abstract

This paper introduces a fractionation scheme using water, acetone, chloroform, diethyl ether, ethanol, n-hexane, and methanol as extractants for the determination of manganese in spinach samples by inductively coupled plasma-mass spectrometry (ICP-MS). Simulated gastric and intestinal digestions as well as n-octanol extraction and activated carbon adsorption were performed for the bioavailability assessments. Comparative studies of the various extraction treatments were evaluated for confirmation analysis. The total elemental concentrations were determined after digesting the samples in a microwave digestion system. The method validation parameters were defined in terms of the detection limits, accuracy, and precision. Additional validation was performed by comparing the ICP-MS method with atomic absorption spectrometry. The limits of detection and quantification were 0.046 and 0.154 mg kg-1, respectively. Additionally, the repeatability and reproducibility, calculated from the relative standard deviation (%RSD), were 2.4% and 3.7%, respectively.  相似文献   

3.
A system for somatic embryogenesis and plant regeneration of spinach from hypocotyl segments has been established. Callus was induced on solid media supplemented with 8.5–15.0 mg.l−1 of indole-3-acetic acid and 3.46–34.64 mg.l−1 gibberellic acid. Callus was then subcultured on different media (solid or liquid) with or without IAA, or continuously maintained on the initiating media. Somatic embryos were obtained in subcultures on IAA-containing media as well as in long-term cultures on initiating media. The best results were achieved in liquid subcultures. About 60% of plantlets survived after transplanting in pots.  相似文献   

4.
Interactions between Se (as selenate) and I (as iodate) uptake by spinach plants (Spinacia oleracea L.) were studied under controlled conditions using solution culture. Spinach readily accumulated both Se and I in the edible parts, the leaves, with solution-to-leaf transfer factors ranging from 3.5 to 13.4. The distribution coefficients between leaves and roots ranged from 4.07 to 5.66 for I and 4.51 to 8.59 for Se. Selenium concentrations in plant tissues were unaffected by addition of I to the nutrient solution. Similarly, plant I concentrations were unaffected by addition of Se to the nutrient solution, except in nutrient solution with I at a concentration of 50 μM, in which addition of Se lowered shoot I concentrations significantly, but the effect was of low magnitude. These results indicate the possible feasibility of dual supplementation of plant growth substrates with Se and I to improve human nutrition where these two elements are deficient in the diet. The data also indicate the involvement of a positive feedback mechanism in the uptake of Se by spinach plants, since Se concentrations in leaves increased disproportionately with increasing Se concentration in the nutrient solution.  相似文献   

5.
T. Teucher  E. Heinz 《Planta》1991,184(3):319-326
Uridine 5-diphosphate(UDP)-galactose: 1,2-diacylglycerol 3-O--d-galactopyranosyltransferase (EC 2.4.1.46) is an integral protein of chloroplast envelope membranes from which it has been partially purified (Covès et al., 1986, FEBS Lett. 208, 401–406). We have worked out a purification procedure which after removal of peripheral membrane proteins, solubilization and two chromotographic steps allowed us to identify a 22-kDa protein as the galactosyltransferase. Enrichment of enzymatic activity was paralleled by an enrichment of this protein and its radioactive derivative obtained by photoaffinity labelling with [-–32P]UDP which is a potent inhibitor of the enzyme. The purification factor of about 350 is substantially higher than achieved previously and indicates that the enzyme represents less than 0.3% of the envelope proteins. The purified enzyme has a Km of 87 M for UDP-galactose with dioleoylglycerol as acceptor and could not be activated by addition of other lipids.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-propanesulfonate - DTE dithioerythritol - MGD monogalactosyl diacylglycerol - PMSF phenylmethanesulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

6.
Many plant species produce phytoecdysteroids (PEs: i.e. analogues of insect steroid hormones). There is increasing evidence that PEs are used as a chemical defence by plants against non-adapted insects and nematodes. PEs are good candidates for the development of an environmentally safe approach to crop protection. Most crop species do not accumulate PEs. However, many arguments support the idea that most, if not all, plant species have the genetic ability to produce PEs, but the biosynthetic pathway is not active. A better understanding of the PE biosynthetic pathway and its regulation is consequently necessary. Spinach is one of the very few crop plants which produce large amounts of PEs, of which 20-hydroxyecdysone is the major component. Labeling experiments with radiolabeled precursor (mevalonic acid), putative ecdysteroid intermediates and 20-hydroxyecdysone itself have allowed investigation of PE biosynthesis and transport during spinach development. Biosynthesis takes place in older leaf sets ("sources"), but not in the young developing ones, which in contrast accumulate (acting as "sinks") the PEs produced by the older leaves. PEs are thus continuously redistributed within the developing plant, as its leaf set number increases. The biosynthetic pathway has been analyzed using excised leaves and various labeled precursors, and a preferential sequence of the last steps has been established. Although they do not produce PEs, apical leaf sets are nevertheless able to perform several putative terminal steps of PE biosynthesis. The regulatory mechanisms of PE synthesis appear to involve a direct negative feedback of 20-hydroxyecdysone (the major PE in spinach) on its own synthesis; thus, a sustained synthesis in older leaves requires that they can export the PE they produce.  相似文献   

7.
Rates of CO2 fixation during the light period and the rates of CO2 release during the night period were measured using mature leaves from 39- to 49-d-old spinach (Spinacia oleracea L., US Hybrid 424; grown in 9 h light, 15 h darkness, daily) and mature leaves from 21-d-old barley (Hordeum vulgare L., cv. Apex; grown in 14 h light, 10 h darkness, daily). At certain times during the light and dark periods leaves were harvested for assay of their contents of soluble carbohydrates, starch, malate and the various amino acids. Evaluation of the results of these measurements shows that in spinach and barley leaves 46% and 26%, respectively, of the carbon assimilated during the light period is deposited in the leaves for export during the night period. Taking into account the carbon consumption in the source leaves by dark respiration, it is evaluated that rates of assimilate export during the light period from spinach and barley leaves [38 and 42 atom C · (mg Chl)–1 · h–1] are reduced in the dark period to 16 atom C · (mg Chl)–1 · h–1 in both species. The calculated C/N ratios of the photoassimilates exported during the dark period were 0.029 and 0.015 for spinach and barley leaves, respectively.This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr. Dieter Heineke for stimulating discussions and Mrs. Petra Hoferichter and Mrs. Marita Feldkämper for their technical assistance.  相似文献   

8.
The activity of nitrate reductase (+Mg(2+), NR(act)) in illuminated leaves from spinach, barley and pea was 50-80% of the maximum activity (+EDTA, NR(max)). However, NR from leaves of Ricinus communis L. had a 10-fold lower NR(act), while NR(max) was similar to that in spinach leaves. The low NR(act) of Ricinus was independent of day-time and nitrate nutrition, and varied only slightly with leaf age. Possible factors in Ricinus extracts inhibiting NR were not found. NR(act) from Ricinus, unlike the spinach enzyme, was very low at pH 7.6, but much higher at more acidic pH with a distinct maximum at pH 6.5. NR(max) had a broad pH response profile that was similar for the spinach and the Ricinus enzyme. Accordingly, the Mg(2+)-sensitivity of NR from Ricinus was strongly pH-dependent (increasing sensitivity with increasing pH), and as a result, the apparent activation state of NR from a Ricinus extract varied dramatically with pH and Mg(2+)concentration. Following a light-dark transition, NR(act) from Ricinus decreased within 1 h by 40%, but this decrease was paralleled by NR(max). In contrast to the spinach enzyme, Ricinus-NR was hardly inactivated by incubating leaf extracts with ATP plus okadaic acid. A competition analysis with antibodies against the potential 14-3-3 binding site around ser 543 of the spinach enzyme revealed that Ricinus-NR contains the same site. Removal of 14-3-3 proteins from Ricinus-NR by anion exchange chromatography, activated spinach-NR but caused little if any activation of Ricinus-NR. It is suggested that Mg(2+)-inhibition of Ricinus-NR does not require 14-3-3 proteins. The rather slow changes in Ricinus-NR activity upon a light/dark transient may be mainly due to NR synthesis or degradation.  相似文献   

9.
An efficient transformation and regeneration system was established for the production of transgenic spinach (Spinacia oleracea L.) plants. Cotyledon explants were infected with Agrobacterium tumefaciens strain LBA4404 carrying the selectable marker gene, neomycin phosphotransferase II (nptII), and the reporter gene smgfp, encoding soluble-modified green-fluorescent protein, driven by the cauliflower mosaic virus 35S promoter. The infected explants were cultured on Murashige and Skoog medium, containing 1 mg/l benzyladenine and 0.4 mg/l naphthaleneacetic acid. Shoots were regenerated on selection medium containing 50 mg/l kanamycin. Regenerated kanamycin-resistant shoots were rooted on medium containing 1 mg/l indolebutyric acid and subsequently grown in soil in the greenhouse. Southern blot analysis indicated that the smgfp gene had been integrated into the spinach genome. Northern and Western blots showed that the smgfp gene was expressed in progeny plants. Received: 31 March 1998 / Revision received: 27 September 1998 / Accepted: 10 Ocotber 1998  相似文献   

10.
Nodularin, a cyclic hepatotoxic pentapeptide produced by the nitrogen-fixing cyanobacterium Nodularia spumigena, induces oxidative stress in various organisms including higher plants and algae. We have monitored the physiological consequences of N. spumigena AV1 extract exposure on terrestrial plants, specifically focusing on the mitochondrial function of Spinacia oleracea L. Our results show that exposure of the plants to the nodularin-containing extract leads to significantly increased activity of respiratory complex I and citrate synthase, as well as increased accumulation of various subunits of respiratory enzyme complexes. Moreover, upregulation of the stress-induced alternative oxidase as well as the NAD+-specific isocitrate dehydrogenase and mitochondrial ascorbate peroxidase was detected in the mitochondria of plants exposed to N. spumigena AV1 extract, while no difference in the carbonylation level of the mitochondrial proteins could be detected between the control and the exposed plants.  相似文献   

11.
12.
Spinach (Spinacia oleracea L.) is considered a nitrogen (N) intensive plant with high nitrate (NO3?) accumulation in its leaves. The current study via a two-year field trial introduced an approach by combining N fertilization from different sources (e.g., ammonium nitrate; 33.5 % N, and urea; 48 % N) at different rates (180, and 360 kg N ha?1) with the foliar spraying of molybdenum (Mo) as sodium molybdate, and/or manganese (Mn) as manganese sulphate at rates of 50 and 100 mgL?1 of each or with a mixture of Mo and Mn at rates of 50 and 50 mg L?1, respectively on growth, chemical constituents, and NO3? accumulation in spinach leaves. Our findings revealed that the highest rate of N fertilization (360 kg N ha?1) significantly increased most of the measured parameters e.g., plant length, fresh and dry weight plant?1, number of leaves plant?1, leaf area plant?1, leaf pigments (chlorophyll a, b and carotenoids), nutrients (N, P, K, Fe, Mn, Zn), total soluble carbohydrates, protein content, net assimilation rate, and NO3? accumulation, but decreased leaf area ratio and relative growth rate. Moreover, plants received urea-N fertilizer gave the highest values of all previous attributes when compared with ammonium nitrate –N fertilizers, and the lowest values of NO3? accumulation. The co-fertilization of N-Mo-Mn gave the highest values in all studied attributes and the lowest NO3? accumulation. The best treatment was recorded under the treatment of 360 kg N-urea ha?1 in parallel with the combined foliar application of Mo and Mn (50 + 50 mg L?1). Our findings proposed that the co-fertilization of N-Mo-Mn could enhance spinach yield and its quality, while reducing NO3? accumulation in leaves, resulting agronomical, environmental and economic benefits.  相似文献   

13.
The objective of this study was to determine if plant roots have to take up nitrate at their maximum rate for achieving maximum yield. This was investigated in a flowing-solution system which kept nutrient concentrations at constant levels. Nitrate concentrations were maintained in the range 20 to 1000 μM. Maximum uptake rate for both species was obtained at 100 μM. Concentrations below 100 μM resulted in decreases in uptake rate per cm root (inflow) for both spinach and kohlrabi by 1/3 and 2/3, respectively. However, only with kohlrabi this caused a reduction in N uptake and yield. Thus indicating that this crop has to take up nitrate at the maximum inflow. Spinach, however, compensated for lower inflows by enhancing its root absorbing surface with more and longer roots hairs. Both species increased their root length by 1/3 at low nitrate concentrations.  相似文献   

14.
NAD kinase activity has been found in a soluble, cytoplasmic fraction and in the chloroplasts prepared from green spinach leaves. A small amount of both the cytoplasmic and the chloroplastic NAD kinase activities was retained on a calmodulin-Sepharose affinity column. The cytoplasmic NAD kinase eluted from the affinity column was found to be enhanced by calmodulin in a Ca2+-dependent manner. The chloroplastic enzyme which is located exclusively in the stroma and not in the envelope and thylakoid fractions was not affected by Ca2+ and calmodulin. The stromal fraction of purified chloroplasts contained only a negligible amount of calmodulin, most probably due to cytoplasmic contamination. Based on these data, two different mechanisms for the light-dependent modulation of spinach NAD kinase activity are suggested.  相似文献   

15.
Spinach plants were grown in hydroponic culture provided with variable limiting amounts of N. During a complete diurnal cycle, growth of the root and shoot parts, as well as levels of soluble and insoluble sugars and of free amino acids, were monitored. No clear relationship could be detected between the level of N feeding and the levels of free sugars and amino acids. Analysis of variance revealed that the variances in the relative growth rates of plant root and shoot could be correlated with the levels of sugars and amino acids. Root amino acid concentration could be correlated with shoot amino acid concentration and root sugar concentration. No relationship was found between the variances in root and shoot free sugar concentrations.  相似文献   

16.
A reliable plant regeneration system is described for the production of adventitious shoots from root explants of spinach. Explants from roots of axenic shoots and roots induced on cultured hypocotyl explants were used for adventitious shoot induction. Explants from apical, middle and basal root regions were incubated on Nitsch and Nitsch medium supplemented with α-naphthaleneacetic acid, gibberellic acid and kinetin. Optimum shoot regeneration was from explants of apical and middle root regions on medium with 20 μm α-naphthaleneacetic acid and 5.0 μm gibberellic acid. Shoots originated directly from root tissues without an intervening callus phase. Adventitious shoots were rooted and were grown to maturity in the glasshouse. This plant regeneration procedure has been exploited in preliminary studies of Agrobacterium-mediated transformation. Received: 27 February 1996 / Revision received: 22 August 1996 / Accepted: 30 September 1996  相似文献   

17.
The amino acid sequence of spinach (Spinacia oleracea L.) plastocyanin was determined. It consists of a single polypeptide chain of 99 residues and has a sequence molecular weight of 10415. The sequence was determined by using a Beckman 890C automatic sequencer and by the dansyl--phenyl isothiocyanate analysis of peptides obtained by the enzymic digestion of purified CNBr fragments. Overlap through the two methionine residues was not shown. Sedimentation equilibrium in the ultracentrifuge gave a molecular weight for spinach plastocyanin of about 9000, in contrast with the value of 21000 reported previously by Katoh et al. (1962).  相似文献   

18.
Summary We examined the prospects for using the female gametophyte irradiation technique in cabbage to reduce the number of generations needed for cytoplasm transfer. Three different crosses were used with one nuclear and two cytoplasmic male-sterile lines as female parents. The doses applied ranged from 100 to 700 Gy. Differences between the genotypes were observed only in embryo and plant production with varying dose. Several plants derived from the various experiments exhibited one or two recessive paternal markers and an aneuploid number of chromosomes, which shows an irradiation-induced loss of maternal chromosomes. However, no androgenetic haploid plant was obtained. The aneuploid plants could sometimes be backcrossed, and in one case a shift in the segregation ratio towards the paternal (non-irradiated) phenotype was observed. We concluded that while the female gametophyte irradiation technique could reduce the number of generations necessary for cytoplasm transfer, the damage induced seems too restricted for this technique to be applied in cabbage breeding at present.  相似文献   

19.
Fujita  Naoko  Ayukawa  Yu  Fuke  Mitsutoshi  Teraoka  Tohru  Watanabe  Kyoko  Arie  Tsutomu  Komatsu  Ken 《Planta》2017,245(1):221-226
Planta - A LAMP-mediated, simple and rapid method for sex identification in spinach was developed. Nutrient compositional analysis showed a higher iron content in male than female plants. Spinach...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号