首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Gao W  Chen ZJ  Yu JZ  Raska D  Kohel RJ  Womack JE  Stelly DM 《Genetics》2004,167(3):1317-1329
We report the development and characterization of a "wide-cross whole-genome radiation hybrid" (WWRH) panel from cotton (Gossypium hirsutum L.). Chromosomes were segmented by gamma-irradiation of G. hirsutum (n = 26) pollen, and segmented chromosomes were rescued after in vivo fertilization of G. barbadense egg cells (n = 26). A 5-krad gamma-ray WWRH mapping panel (N = 93) was constructed and genotyped at 102 SSR loci. SSR marker retention frequencies were higher than those for animal systems and marker retention patterns were informative. Using the program RHMAP, 52 of 102 SSR markers were mapped into 16 syntenic groups. Linkage group 9 (LG 9) SSR markers BNL0625 and BNL2805 had been colocalized by linkage analysis, but their order was resolved by differential retention among WWRH plants. Two linkage groups, LG 13 and LG 9, were combined into one syntenic group, and the chromosome 1 linkage group marker BNL4053 was reassigned to chromosome 9. Analyses of cytogenetic stocks supported synteny of LG 9 and LG 13 and localized them to the short arm of chromosome 17. They also supported reassignment of marker BNL4053 to the long arm of chromosome 9. A WWRH map of the syntenic group composed of linkage groups 9 and 13 was constructed by maximum-likelihood analysis under the general retention model. The results demonstrate not only the feasibility of WWRH panel construction and mapping, but also complementarity to traditional linkage mapping and cytogenetic methods.  相似文献   

3.
Whole-genome radiation hybrid mapping has been applied extensively to human and certain animal species, but little to plants. We recently demonstrated an alternative mapping approach in cotton (Gossypium hirsutum L.), based on segmentation by 5-krad γ-irradiation and derivation of wide-cross whole-genome radiation hybrids (WWRHs). However, limitations observed at the 5-krad level suggested that higher doses might be advantageous. Here, we describe the development of an improved second-generation WWRH panel after higher dose irradiation and compare the resulting map to the 5-krad map. The genome of G. hirsutum (n=26) was used to rescue the radiation-segmented genome of G. barbadense (n=26) introduced via 8- and 12-krad γ-irradiated pollen. Viable seedlings were not recovered after 12-krad irradiation, but 8-krad irradiation permitted plant recovery and construction of a 92-member WWRH mapping panel. Assessment of 31 SSR marker loci from four chromosomes revealed that the 8-krad panel has a marker retention frequency of ca. 76%, which is approximately equivalent to the rate of loss in a low-dose animal radiation hybrid panel. Retention frequencies of loci did not depart significantly from independence when compared between the A and D subgenomes, or according to positions along individual chromosomes. WWRH maps of chromosomes 10 and 17 were generated by the maximum likelihood RHMAP program and the general retention model. The resulting maps bolster evidence that WWRH mapping complements traditional linkage mapping and works in cotton, and that the 8-krad panel complements the 5-krad panel by offering higher rates of chromosome breakages, lower marker retention frequency, and more retention patterns. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
Loci for 9322 equine expressed sequence tags (ESTs) were predicted using the Comparative Mapping by Annotation and Sequence Similarity (Compass) strategy in order to evaluate the programme's ability to make accurate locus predictions in species with comparative gene maps. Using human genome sequence information from Build 35 (May 2004) and published marker information from the radiation hybrid (RH) maps for equine chromosomes (ECA) 17 and X, 162 ESTs were predicted to locations on ECA17 and 328 ESTs to locations on ECAX by selection of the 'top blast hit'. The locations of 30 ESTs were assessed experimentally by RH mapping analysis to evaluate the accuracy of the Compass predictions. The data revealed that 53% (16 of 30) of the ESTs predicted on ECA17 and ECAX mapped to those chromosomes. Analysis of the results suggested the need to identify expressed orthologous sequences in order to generate more accurate predictions for ESTs. Locus predictions were reassessed with three modifications to the Compass strategy's orthologue selection parameters. Selection of the 'top gene hit' improved accuracy to 72% (21 of 29), while selection of the 'top expressed gene hit' improved accuracy to 86% (24 of 28). Using the default Compass parameters with the UniGene database improved prediction accuracy to 96% (22 of 23); however, this level of accuracy came with a substantial decrease in the total number of predictions. When used with optimized prediction parameters, the Compass strategy can be a practical in silico map location prediction tool for large EST sample sets from unsequenced animal genomes.  相似文献   

5.
A first-generation porcine whole-genome radiation hybrid map   总被引:15,自引:0,他引:15  
A whole-genome radiation hybrid (WG-RH) panel was used to generate a first-generation radiation map of the porcine (Sus scrofa) genome. Over 900 Type I and II markers were used to amplify the INRA-University of Minnesota porcine Radiation Hybrid panel (IMpRH) comprised of 118 hybrid clones. Average marker retention frequency of 29.3% was calculated with 757 scorable markers. The RHMAP program established 128 linkage groups covering each chromosome (n = 19) at a lod ≥ 4.8. Fewer than 10% of the markers (59) could not be placed within any linkage group at a lod score ≥4.8. Linkage group order for each chromosome was determined by incorporating linkage data from the swine genetic map as well as physical assignments. The current map has an estimated ratio of ∼70 kb/cR and a maximum theoretical resolution of 145 kb. This initial map forms a template for establishing accurate YAC and BAC contigs and eventual positional cloning of genes associated with complex traits. Received: 8 January 1999 / Accepted: 13 April 1999  相似文献   

6.
Following several criteria, we collected, clustered, and functionally categorized 653 expressed sequence tags (ESTs) of 5 ends from porcine back fat libraries from the >15,000 porcine ESTs collected to date. By searching the LocusLink and Mapviewer database, we knew the positions of these 653 ESTs on human chromosomes (HSAs). Sus scrofa radiation hybrid (SSRH) mapping revealed that 298 porcine EST clusters out of 653 were localized near microsatellite (MS) markers. Among these EST clusters, we could assign 182 to their porcine chromosomes (SSCs) on the SSRH map.  相似文献   

7.
To construct a panel of radiation hybrids (RHs) for human chromosome 3p mapping, mouse microcell hybrid cells, A9(neo3/t)-5, containing a single copy of human chromosome 3p with pSV2neo plasmid DNA integrated at 3p21-p22 were irradiated and fused to mouse A9 cells. A panel of 96 RHs that retain several sizes and portions of human chromosome 3p segments was used to map 25 DNA markers for chromosome 3p. Eight of them, H28, H29, H32, H33, H35, H38, H48, and H64, were cloned from Alu-primed PCR products using A9(neo3/t)-5 cell DNA as a template. The most likely order of the 24 markers, except for H28, based on the statistical ordering method proposed by Falk, was cen-D3S4-D3S3-D3S30-H29-D3S13-D3S2-+ ++H48-D3F15S2-D3S32-D3S23-CCK-H35-H33- D3S11-D3S12-RARB-THRB(ERBA2-pBH302)- H64-H38-RAF1-D3S18-H32-D3S22-pter. The order and location of these markers were in good agreement with those previously determined by other mapping methods, suggesting that a panel of these 96 RHs is a valuable source for a rapid mapping of human chromosome 3p markers.  相似文献   

8.
9.
10.
A 5000-rad whole-genome radiation hybrid cell panel (BW5000) was developed for mapping the deer mouse (Peromyscus maniculatus bairdii) genome. The panel consists of 103 cell lines and has an estimated marker retention frequency of 63.9% (range, 28%–88%) based on PCR typing of 30 Type I (coding gene) and 25 Type II (microsatellite) markers. Using the composite Mus map, Type I markers were selected from six Mus chromosomes, 22 of which are on Mus Chr 11. Fifteen of the Mus Chr 11 markers were simultaneously mapped on an interspecific (P. maniculatus × P. polionotus) backcross panel to test the utility of the radiation hybrid panel, create a framework map, and help establish gene order. The radiation hybrids have effectively detected linkage in the deer mouse genome between markers as far apart as 6.7 cM and resolved markers that are, in the Mus genome, as close as 0.2 Mb. Combined results from both panels have indicated a high degree of gene order conservation of the telomeric 64 cM of Mus Chr 11 in the deer mouse genome. The remaining centromeric portion also shows gene order conservation with the deer mouse but as a separate linkage group. This indicates a translocation of that portion of Mus Chr 11 in P. maniculatus and is consistent with rearrangement breakpoints observed between Mus and other mammalian genomes, including rat and human. Furthermore, this separate linkage group is likely to reside in a chromosomal region of inversion polymorphism between P. maniculatus and P. polionotus.  相似文献   

11.
As a first step towards the development of radiation hybrid maps, we have produced a radiation hybrid panel in the chicken by fusing female embryonic diploid fibroblasts irradiated at 6 000 rads with HPRT-deficient hamster Wg3hCl2 cells. Due to the low retention frequency of the chicken fragments, a high number of clones was produced from which the best ones were selected. Thus, 452 fusion clones were tested for retention frequencies with a panel of 46 markers. Based on these results, 103 clones with a mean marker retention of 23.8% were selected for large scale culture to produce DNA in sufficient quantities for the genotyping of numerous markers. Retention frequency was tested again with the same 46 markers and the 90 best clones, with a final mean retention frequency of 21.9%, were selected for the final panel. This panel will be a valuable resource for fine mapping of markers and genes in the chicken, and will also help in building BAC contigs.  相似文献   

12.
A bovine whole-genome radiation hybrid panel and outline map   总被引:10,自引:0,他引:10  
A 3000-rad radiation hybrid panel was constructed for cattle and used to build outline RH maps for all 29 autosomes and the X and Y chromosomes. These outline maps contain about 1200 markers, most of which are anonymous microsatellite loci. Comparisons between the RH chromosome maps, other published RH maps, and linkage maps allow regions of chromosomes that are poorly mapped or that have sparse marker coverage to be identified. In some cases, mapping ambiguities can be resolved. The RH maps presented here are the starting point for mapping additional loci, in particular genes and ESTs that will allow detailed comparative maps between cattle and other species to be constructed. Radiation hybrid cell panels allow high-density genetic maps to be constructed, with the advantage over linkage mapping that markers do not need to be polymorphic. A large quantity of DNA has been prepared from the cells forming the RH panel reported here and is publicly available for mapping large numbers of loci.  相似文献   

13.
Construction and optimization of a dog whole-genome radiation hybrid panel   总被引:10,自引:0,他引:10  
A dog whole-genome radiation hybrid (WGRH) panel including 126 clones was constructed by fusing dog fibroblasts irradiated at 5000 rads with thymidine kinase-deficient hamster cells. The average retention frequency of the panel designated as RHDF5000 is 21%, and its resolution power is estimated at 600 kb. The data provided by typing 400 markers were used to estimate linkage power changes subsequent to panel reduction. These changes were analyzed by recomputing typing data from five reduced panels. From these simulations, the parameters allowing investigation of the evolution of the linkage power in the course of panel reduction were determined. Guidelines for constructing a WGRH panel are proposed. Received: 23 February 1999 / Accepted: 11 May 1999  相似文献   

14.
Whole genome radiation hybrid mapping   总被引:7,自引:0,他引:7  
  相似文献   

15.
16.
17.
We have localized 38 human brain cDNA sequences to individual human chromosomes. PCR primers were designed from expressed sequence tags and tested for specific amplification from human genomic DNA. The sizes of amplification products from DNA of somatic cell hybrid mapping panels were determined electrophoretically using an automated fluorescence detection system. Chromosomal assignments were made by discordancy analysis.  相似文献   

18.
Application of radiation hybrid in gene mapping   总被引:2,自引:0,他引:2  
Radiationhybrid(RH)mappingisasomaticcellgeneticmappingtechniquewitharesolutionofabout500kb.Ithasbecomeageneralwaytoconstructhighresolution,contiguousphysicalmapofhumanchromosomes[1].BasedonearlierstudiesofGossandHarris[2]andmodificationlaterbyCoxandcoworker…  相似文献   

19.
We have constructed somatic cell hybrids containing different overlapping deletions involving human chromosome 13. Cytogenetic characterisation of the breakpoints allowed division of the chromosome into six distinct regions. Molecular characterisation of these hybrids allowed regional assignment of anonymous DNA sequences, cDNAs, and isoenzyme variants and these hybrids should prove valuable in the analysis and isolation of genes and disease loci on chromosome 13.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号