首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Two different kinds of filtration nephridia, protonephridia and metanephridia, are described in Polychaeta. During ontogenesis protonephridia generally precede metanephridia. While the latter are segmentally arranged, protonephridia are characteristic for the larva and are the first nephridial structure formed during ontogenesis. There is strong evidence that both organs depend on the same information and that their specific structure depends on the way in which the coelom is formed and which final expansion it gains. While metanephridia are regarded to be homologous throughout the polychaetes, protonephridia seem to have evolved in several lineages. Some of the protonephridia closely resemble less differentiated stages of metanephridial development, so that protonephridial evolution can be explained by truncation of the metanephridial development. Nevertheless, structural details are large enough to allow us to expect information on the polychaete evolution if the database on polychaete nephridia increases. A comparison of the polychaete metanephridia with those of the Clitellata and Sipuncula reveals some surprising details. In Clitellata the structure of the funnel is quite uniform in microdrilid oligochaetous Clitellata and resembles that of the aeolosomatids. Like the nephridia in the polychaete taxa Sabellida and Terebellida, those of the Sipunucla possess podocytes covering the coelomic side of the duct.  相似文献   

2.
    
《Current biology : CB》2021,31(16):3629-3638.e2
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

3.
    
Schulze, A. 2000. Ultrastructure of opisthosomal chaetae in Vestimentifera (Pogonophora, Obturata) and implications for phylogeny. — Acta Zoologica (Stockholm) 82 : 127–135
The posterior segmented body region of Vestimentifera bears rows of uncini that function to anchor the animal within its tube. SEM studies of five vestimentiferan species reveal intraspecific and interspecific variation in the number of chaetigerous segments and the arrangement of uncini within a given segment. The portion of an uncinus that extends beyond the epidermis comprises two opposing groups of teeth that probably correspond to the capitium and subrostral process of polychaete uncini, and a distinct protuberance between them, interpreted as a rostrum. In Ridgeia piscesae , the uncini are formed by chaetal follicles, consisting of a chaetoblast, a follicle cell and an epidermis cell. The chaetal shaft is elongate and composed of up to 40 hollow cylinders that are invaded at their base by microvilli from the apical part of the chaetoblast. Opisthosomal chaetae in perviate Pogonophora are usually restricted to four per segment and are of a rod-shaped type. It is hypothesized that the rod-shaped chaetae represent reduced hooked chaetae probably derived from a condition such as found in Monilifera. Uncini of Pogonophora, Sabellida, Terebellida and Oweniida are considered homologous but details of chaetal design may be due to functional adaptations and thus do not represent reliable characters for phylogenetic studies on higher taxonomic levels than genera or potentially families.  相似文献   

4.
Characters of Pogonophora, including Perviata (Frenulata and Scleronlinida) and Vestimentifera, are critically analysed and the characters re‐evaluated with respect to their reliability in determining relationships with Annelida‐Polychaeta in general and with Oweniidae in particular, as well as with Oligomera. In addition to several differentiations which possibly express parallelisms, only a few characters reflect trustworthy information based on the current state of knowledge. These, however, still include ‘sets’ of both Annelida‐Polychaeta features and Oligomera features; despite the more recent trend to regard the Pogonophora as annelids, no unequivocal preference can be given as to which of these ‘sets’ is convergent/homoplastic. The intra‐epithelial nervous system without true cerebral ganglia, typical of Epineuralia as well as Pogonophora and Oweniidae, is here considered to represent the paedomorphic peripheral‐epidermal larval system of Gastroneuralia in contrast to the ganglionated gastroneural adult system.  相似文献   

5.
    
Relatively little is known about the morphology and ultrastructure of the Malpighian tubules of spiders (Arachnida: Araneae). Our study represents the first investigation of the Malpighian tubules of a theraphosid spider and is the only study to examine the living Malpighian tubules using confocal laser scanning microscopy. In theraphosid spiders, the Malpighian tubules originate from the stercoral pocket in the posterior portion of the opisthosoma and extend forward toward the prosoma in a dendritic pattern. There are three distinct segments (initial, main, and terminal), all dark brown in appearance. Each segment has distinctive ultrastructural features. Both the terminal and the main segment appear to be composed of at least two cell types with finger-like cytoplasmic protrusions associated with one of these types. The terminal segment, which is most proximal to the stercoral pocket, is the largest in diameter. It is composed of large, cuboidal cells containing many mitochondria and lipid inclusions. The main segment is intermediate in diameter with many mitochondria and secretory vesicles present. The initial segment is relatively thin in comparison to the other segments and is intimately associated with the digestive gland. The cells of the initial segment contain very little cytoplasm, fewer mitochondria, secretory vesicles, and prominent inclusions.  相似文献   

6.
Rohde K. 1973. Ultrastructure of the protonephridial system of Polystomoides malayi Rohde and P. renschi Rohde (Monogenea : Polystomatidae). International Journal for Parasitology3: 329–333. Polystomoides malayi and P. renschi have three types of protonephridial flames. The first type is a typical flame cell with internal and external ribs connected by a weir membrane without nephrostomes, and with internal and external leptotriches. The second type is a flame cell complex consisting of at least two flames reaching into a common cavity. The third type is a non-terminal (= lateral) flame in the protonephridial ducts, consisting of loosely arranged cilia many of which have lateral tube-like extensions and whose tips have irregularly arranged filaments gradually decreasing in number. The number of cilia in all types of flames varies. The smallest capillaries are strongly convoluted and have a smooth or slightly reticulated surface, the larger ducts have strongly reticulated walls and single cilia may be found in the cavities of the reticulum.  相似文献   

7.
DNA studies of 23 taxa (20 platyhelminths, 1 nemertean, Homo and Artemia) and electron-microscopic studies of the protonephridia of many platyhelminths (supported by some additional ultrastructural data) have led to the following conclusions: the Neodermata are monophyletic; Temnocephalida and Dalyelliida form one clade and are not the primitive sister group of the Neodermata; Gyrocotylidea, Amphilinidea and Eucestoda form one monophylum; Pterastericolidae and Umagillidae are dalyelliids and not the sister group of the Neodermata; and Proseriata are unlikely to be closely related with the Tricladida. A large taxon consisting of the Proseriata and some other turbellarians may represent the sister group of the Neodermata.  相似文献   

8.
Deep-sea vestimentiferan tubeworms, which live in symbiosis with bacteria, exhibit different life strategies according to their habitat. At unstable and relatively short-lived hydrothermal vents, they grow extremely fast, whereas their close relatives at stable and long-persisting cold seeps grow slowly and live up to 300 years. Growth and age differences are thought to occur because of ecological and physiological adaptations. However, the underlying mechanisms of cell proliferation and death, which are closely linked to homeostasis, growth, and longevity, are unknown. Here, we show by immunohistochemical and ultrastructural cell cycle analyses that cell proliferation activities of the two species studied are higher than in any other characterized invertebrate, being only comparable with tumor and wound-healing processes. The slow growth in Lamellibrachia luymesi from cold seeps results from balanced activities of proliferation and apoptosis in the epidermis. In contrast, Riftia pachyptila from hydrothermal vents grows fast because apoptosis is down-regulated in this tissue. The symbiont-housing organ, the trophosome, exhibits a complex cell cycle and terminal differentiation pattern in both species, and growth is regulated by proliferation. These mechanisms have similarities to the up- and down-regulation of proliferation or apoptosis in various types of tumor, although they occur in healthy animals in this study, thus providing significant insights into the underlying mechanisms of growth and longevity. Financial support was provided by the Austrian Science Foundation (FWF; grants to M.B.), a DOC scholarship from the Austrian Academy of Science (to B.P.), and grants from the US National Science Foundation (to C.R. Fisher).  相似文献   

9.
Gutless tube-dwelling worms of pogonophorans (also known as frenulates) and vestimentiferans depend on primary production of endosymbiotic bacteria. The endosymbionts include thiotrophs that oxidize sulfur for autotrophic production and methanotrophs that oxidize and assimilate methane. Although most of the pogonophoran and vestimentiferan tube worms possess single thiotrophic 16S rRNA genes (16S rDNA) related to γ-proteobacteria, some pogonohorans are known to bear single methanotroph species or even dual symbionts of thiotrophs and methanotrophs. The vestimentiferan Lamellibrachia sp. L1 shows symbiotic 16S rDNA sequences of α-, β-, γ-, and ε-proteobacteria, varying among specimens, with RuBisCO form II gene (cbbM) sequences related to β-proteobacteria. An unidentified pogonophoran from the world’s deepest cold seep, 7326-m deep in the Japan Trench, hosts a symbiotic thiotroph based on 16S rDNA with the RuBisCO form I gene (cbbL). In contrast, a shallow-water pogonophoran (Oligobrachia mashikoi) in coastal Japan Sea has a methanotrophic 16S rDNA and thiotrophic cbbL, which may suggest the feature of type X methanotrophs. These observations demonstrate that pogonophoran and vestimentiferan worms have higher plasticity in bacterial symbioses than previously suspected.  相似文献   

10.
Each of the trunk segments of the polychaete Eusyllis blomstrandi is equipped with paired epidermal luminescent domains. They luminesce upon mechanical or electrical stimulation. Light emission can be rapidly turned on and off, appears intracellular and is highly coordinated among the trunk segments. Luminescent light is typically emitted in series of flashes. Light emission in a flash starts locally in a group of segments and recruits adjacent segments at a rate as fast as ≤1 ms/segment. The collapse of light emission at the end of a flash is almost simultaneous in all of the segments involved. In the intact worm, the luminescent reaction usually involves only a posterior group of segments. Facilitation becomes manifest as the consecutive flashes in a series increase in brightness and duration and recruit additional anterior segments that were not active in earlier flashes. The flash series stops abruptly instead of decreasing asymptotically in brightness. In posterior fragments, all the segments participate in flashing luminescence, indicating the loss of an inhibitory effect exerted by the anterior end in the case of whole animals. Posterior fragments survive and are still capable of luminescence weeks after fragmentation although they do not regenerate a head. Immediately upon fragmentation of the worm, the posterior fragment luminesces continuously for some seconds while the anterior part quickly stops light emission. This suggests a decoy and/or a predator-alerting function of prolonged, strong luminescence by the moribund posterior fragment to the benefit of the survival of the anterior fragment.  相似文献   

11.
Siboglinid, or pogonophoran, annelids are tubicolous worms that rely on chemoautotrophic endosymbionts for nutrition. Three clades within the siboglinids are recognized: Frenulata, Vestimentifera, and Monilifera. As a group, these worms have received considerable attention from molecular phylogenetists. Most studies have focused either on the evolutionary origins of the group or on the relationships within vestimentiferans, which live at hydrocarbon seeps and hydrothermal vents. Here I review the literature to date on siboglinid molecular phylogeny and summarize the clade’s evolution. The vestimentiferans have been well studied, especially in the eastern Pacific. The seep taxon Lamellibrachia is basal in the clade with vent species being more derived. Recent studies of seeps are finding new species and suggest that habitat depth can be correlated with species boundaries. In contrast to the vestimentiferans, frenulate evolution has been poorly studied. Despite their greater apparent diversity, frenulate specimens have not been sampled so extensively, and thus little is known about their evolution. Sclerolinum, also referred to as Monilifera, is a recognized genus of siboglinids that forms the sister group to Vestimentifera. Like the frenulates, little is known about the history of this group. Our present understanding of siboglinid phylogeny has, in large part, been dictated by insufficient sampling effort.  相似文献   

12.
Excretory and circulatory systems in Prostomatella arenicola are examined at the ultrastructural level. Interdigitating cells, which rest on a thin fibrillar basal lamina, line the lumina of the lateral vessels. A layer of muscle cells and an underlying sheath of fibrillar extracellular material surround each vessel.The excretory system consists of one pair of laterally situated branched protonephridia. Each protonephridium is composed of several terminal cells, an efferent duct and a nephridiopore. The terminal parts of the protonephridia are not restricted to the vicinity of the circulatory system; they can also be found dorsally or laterally to the nerve cords between muscle cells. The presumed filtration area arises as a hollow cylinder from the terminal cell. This cylinder is perforated by numerous clefts which are never bridged by a filter diaphragm. Instead, each terminal cell cylinder is surrounded by an extracellular matrix. The terminal cells neither extend into the lumen of the lateral vessel nor contact the vessel lining cells.Phylogenetic implications of the results are discussed.  相似文献   

13.
Pogonophora, also known as Siboglinidae, are tube-dwelling marine annelids. They rely on endosymbiotic chemoautotrophic bacteria for nutrition and their anatomy and physiology are adapted to their need to obtain both oxygen and reduced sulphur compounds. Frenulate pogonophores are generally long and slender, sediment-living tubeworms; vestimentiferans are stouter, inhabitants of hydrothermal vents and cool seeps; and moniliferans or sclerolinids are very slender inhabitants of decaying wood and sulphidic sediments. The anatomy and ultrastructure of the three groups are compared and recent publications are reviewed. Annelid characters are the presence of chaetae and septa, concentrated at the hind end. The adaptations to a specialised way of life include, in particular, the chitinous tube; the anterior appendages that function as gills; the internal tissue called the trophosome, where the endosymbiotic bacteria live; and the blood vascular system that transports oxygen, sulphide and carbon dioxide to the trophosome.  相似文献   

14.
    
Klaus Rohde 《Hydrobiologia》1991,227(1):315-321
Three types of flame bulbs are distinguished in the Platyhelminthes: type 1 has two cilia arising from a terminal cell and rootlets extending along the weir; type 2 has many cilia arising from a terminal cell and the proximal canal cell closely aligned with it; and type 3 has a non-terminal perikaryon forming many flame bulbs, each with many cilia and a single row of longitudinal ribs. Each type appears in various structural forms. Type 1 is found in the Catenulida; type 2 in the Macrostomida, Polycladida, Prolecithophora, Proseriata, Tricladida, Fecampiidae, and Neodermata; and type 3 in the Rhabdocoela and Lecithoepitheliata. The most likely evolutionary sequence is that type 3 is derived from type 2 and, perhaps, that type 2 is derived from type 1. Characters of the protonephridia show that the Rhabdocoela and the Neodermata form separate phylogenetic lineages; other similarities between these taxa are due to convergent evolution (or horizontal gene transfer?).  相似文献   

15.
Cladistic relationships of the sabellid subfamilies Fabriciinae and Sabellinae are examined in light of recent revisions of fabriciin taxa. The potential placement of Caobangia in the Sabellinae is suggested from an initial analysis of selected fabriciin species and genera. Subsequent cladistic analyses at the family level produced over 1800 cladograms, among which Caobangia is the most plesiomorphic taxon of either the Fabriciinae or Sabellinae. Successive approximations weighting reduced this ambiguity, consistently placing Caobangia in the Sabellinae. Subfamilies are emended on the basis of these results. Cladistic relationships of fabriciin taxa, exclusive of Caobangia , display topological instability among some genera and species. Genera are, however, monophyletic in all topologies. Incorporating ontogenetic data for branching ventral filamentous appendages in Augeneriella reduces ambiguity among genera and suggests alternative transformation series for ventral filamentous appendages.  相似文献   

16.
    
Two species of jaw bearing Ampharetidae (Adercodon pleijeli (Mackie 1994) and Ampharete sp. B) were investigated in order to describe the microanatomy of the mouth parts and especially jaws of these enigmatic polychaetes. The animals of both studied species have 14–18 mouth tentacles that are about 30 µm in diameter each. In both species, the ventral pharyngeal organ is well developed and situated on the ventral side of the buccal cavity. It is composed of a ventral muscle bulb and investing muscles. The bulb consists of posterior and anterior parts separated by a deep median transversal groove. In both species, the triangular teeth or denticles are arranged in a single transversal row on the surface of the posterior part of the ventral bulb just in front of its posterior edge. There are 36 denticles in Adercodon pleijeli and 50 in Ampharete sp. B. The height of the denticles (6–12 µm) is similar in both species. Each tooth is composed of two main layers. The outer one (dental) is the electron‐dense sclerotized layer that covers the tooth. The inner one consists of long microvilli with a collagen matrix between them. The thickness of the dental layer ranges from 0.95 to 0.6 µm. The jaws of the studied worms may play a certain role in scraping off microfouling. The fine structure of the jaws in Ampharetidae is very similar to that of the mandibles of Dorvilleidae, the mandibles and the maxillae of Lumbrineridae, Eunicidae and Onuphidae, and the jaws of other Aciculata. This type of jaw is characterized by unlimited growth and the absence of replacement. The occurrence of jaws in a few smaller Ampharetidae is considered as an apomorphic state.  相似文献   

17.
Kieneke, A. and Hochberg, R. 2012. Ultrastructural observations of the protonephridia of Polymerurus nodicaudus (Gastrotricha: Paucitubulatina). —Acta Zoologica (Stockholm) 93 : 115–124. We studied different regions of the protonephridia of the limnic gastrotrich Polymerurus nodicaudus by means of light and electron microscopy to determine how freshwater species might differ from their marine relatives. Microscopic and ultrastructural characters are in accordance with another limnic species of Paucitubulatina, Chaetonotus maximus, whose protonephridial system has been previously reconstructed. Shared protonephridial characters of both species include the presence of highly elongate terminal organ cilia, microvilli, and the canal cell lumen as well as the presence of a conspicuous anterior loop of the protonephridial lumen. These features are not present in representatives of earlier, marine, paucitubulatan lineages (i.e., Xenotrichulidae) and so are assessed as evolutionary novelties that were likely important for the successful colonization of the freshwater environment.  相似文献   

18.
The ultrastructure of the paired lateral ciliary pits in several endemic species of Geocentrophora from Lake Baikal and in one cosmopolitan species, G. baltica, has been compared and the possible functional significance is discussed. The pit is composed of two distinctive parts; the bottom of the pit is an extensive sensitive area, filled with uni-and biciliary sensory receptors with reduced rootlets and numerous neurotubules. The walls of the pit are formed by several large dark cells, characterized by a dark cytoplasm with numerous mitochondria, a large nucleus, intracellular canaliculi, basal infoldings of the cell membrane, glycogen granules and a varying number of cilia. A protruding, densely ciliated ridge occurs along the anterior wall of the pit. The cilia have a strengthened rootlet system and seem to provide a strong water current into the pit. Dark cell processes penetrate the basement membrane of the pit and come into the vicinity of large cells with a cytoplasm similar to that of the dark cells of the pit. These large cells in their turn come close to the terminal parts of the protonephridial canals, containing a weir. Smaller protonephridial capillaries without a weir seem to open directly into the pit lumen. The morphological data obtained suggest that the ciliary pit in not only a sensory structure, but plays a part in osmoregulation and ion exchange as well.  相似文献   

19.
    
The taxon Neodasys has a basal position within Gastrotricha. This makes it very interesting for phylogenetic considerations in this group. To complete the reconstruction of the nephridial system in the stem species of Gastrotricha started earlier, we have studied the whole protonephridial system of Neodasys chaetonotoideus by means of complete sets of ultrathin sections and TEM. In many characters, protonephridia of N. chaetonotoideus resemble those of macrodasyidan gastrotrich species. For example, each of the six protonephridia, arranged in three pairs, consists of three distinct cells that constitute the continuous protonephridial lumen. Especially, the terminal cell of the protonephridia of N. chaetonotoideus shows a striking pattern: The perforation of the filter region is a meandering cleft that is continuous with the seam of the enfolded lumen of that cell. With the results presented here and that of former TEM studies, we give a comprehensive idea of the excretory organs in the ground pattern of Gastrotricha. Moreover, we can elaborate on the hypothesized protonephridial system in the stem species of Bilateria. We suggest that a meandering filtration cleft is a feature of the ground pattern of the Bilateria.  相似文献   

20.
王丽敏  邢向阳  杨纯 《四川动物》2015,34(3):389-393
运用大体解剖和组织切片技术对秦岭滑蜥Scincella tsinlingensis排泄系统进行了组织形态学观察.结果显示:秦岭滑蜥的排泄系统包括肾脏、输尿管、膀胱和泄殖腔.肾脏由被膜与实质构成,实质包括许多泌尿小管与少量结缔组织.泌尿小管包括肾单位与集合管,肾单位的数量较两栖类有了明显增加.结缔组织中分布有少量弹性纤维、网状纤维和大量胶原纤维.输尿管由许多分支的集尿管汇聚形成,包括黏膜与外膜,黏膜由单层柱状上皮过渡为多层鳞状细胞,固有层零散分布有浆细胞,结缔组织中分布有胶原纤维与少量弹性纤维.膀胱由黏膜层、肌层与外膜构成,黏膜上皮为变移上皮,固有层分布有少量的浆细胞.消化道、生殖道和输尿管末端汇聚于泄殖腔,泄殖腔壁由黏膜、肌层和外膜构成,黏膜上皮分布有黏液性细胞和少量浆细胞.秦岭滑蜥的排泄系统与其他卵胎生蜥蜴无明显差别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号