首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The asd gene of escherichia coli encodes aspartic semialdehyde dehydrogenase, an enzyme involved in lysine, threonine, and methionine biosynthesis; its synthesis is controlled by a multivalent repression mechanism. It was cloned in plasmid pBR322 and its complete nucleotide sequence determined. The sequence predicts a polypeptide chain of 367 amino acids, in good agreement with results obtained for the purified protein ( Biellmann et al., 1980a ). Our data indicate a Cys residue instead of a His residue, which was proposed after covalent labeling of the active center of the enzyme; this is more in line with the catalytic site of glyceraldehyde-3-phosphate dehydrogenase, an enzyme which carries out a similar reaction. The nucleotide sequence that precedes the translational start does not display any of the characteristic features of an attenuation signal. Hence the expression of the asd gene is probably not controlled in the same way as other multivalently repressed operons such as ilva and thr.  相似文献   

2.
3.
The Thiobacillus versutus asd gene coding for aspartate-semialdehyde dehydrogenase was cloned in Escherichia coli cells using pBR322 as a vector. The gene was expressed independently of its orientation, suggesting that E. coli RNA polymerase recognized T. versutus promoter sequence. The T. versutus DNA coded protein, of the molecular weight 44,000, was identified by the analysis of the proteins produced by minicells.  相似文献   

4.
5.
6.
A gene (sod) encoding superoxide dismutase (SOD) was cloned from Streptococcus mutans in Escherichia coli, and its nucleotide sequence was determined. The presumptive amino acid sequence of its product revealed that the SOD is basically of Mn type. Insertional inactivation of the sod gene resulted in the loss of SOD activity in crude extracts, indicating that the gene represents the only functional gene for SOD in S. mutans. Moreover, Southern blot analysis indicated that the S. mutans chromosome had no additional gene which was hybridizable with an oligonucleotide probe specific for an SOD motif. The SOD-deficient mutants were able to grow aerobically, albeit more slowly than the parent strains.  相似文献   

7.
8.
9.
10.
11.
12.
13.
In Escherichia coli, thrA, metLM, and lysC encode aspartokinase isozymes that show feedback inhibition by threonine, methionine, and lysine, respectively. In vitro chemical mutagenesis of the cloned lysC gene was used to identify residues and regions of the polypeptide essential for feedback inhibition by lysine. The isolated lysine-insensitive mutants were demonstrated to have missense mutations in amino acid residues 323-352, and at position 250 of aspartokinase III.  相似文献   

14.
A bacterial strain, which assimilated dextran and water-insoluble glucan produced by Streptococcus mutans, was isolated from soil. The bacterium produced and secreted potent dextranase activity, which was identified as Arthrobacter sp. and named CB-8. The dextranase was purified and some enzymatic properties were characterized. The enzyme efficiently decomposed the water-insoluble glucan as well as dextran. A gene library from the bacteria was constructed with Escherichia coli, using plasmid pUC19, and clones producing dextranase activity were selected. Based on the result of nucleotide sequencing analysis, it was deduced that the dextranase was synthesized in CB-8 cells as a polypeptide precursor consisting of 640 amino acid residues, including 49 N-terminal amino acid residues which could be regarded as a signal peptide. In the E. coli transformant, the dextranase activity was detected mostly in the periplasmic space. The gene for the dextranase was introduced into Streptococcus sanguis, using an E. coli-S. sanguis shuttle vector that contained the promoter sequence of a gene for glucosyltransferase derived from a strain of S. mutans. The active dextranase was also expressed and accumulated in S. sanguis cells.  相似文献   

15.
16.
17.
In order to study the regulation of threonine and methionine synthesis in plant seeds, tobacco plants were transformed with a chimeric gene containing the coding DNA sequence of a mutant lysC gene from Escherichia coli fused to a promoter from a phaseolin seed storage protein gene. The bacterial mutant lysC gene codes for aspartate kinase (AK) which is desensitized to feedback inhibition by lysine and threonine. Increased AK activity, compared with control non-transformed plants, was detected in seeds but not in leaves, roots and flowers of the transgenic plants. This expression was accompanied by a significant increase in the levels of free threonine and methionine in the seed. The level of these amino acids also correlated positively with the levels of the bacterial enzyme. No alteration in plant phenotype and 'average seed weight' was observed in any of the transgenic plants, indicating that plant growth and seed development were normal. This study demonstrates, for the first time, that the threonine and methionine biosynthetic pathways are active in plant seeds. Thus, targeting of the production of favorable biosynthetic enzymes to plant seeds may represent a desirable molecular approach for production of crop plants with a more balanced nutritional quality.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号