首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p21ras GTPase-activating protein (GAP) is thought to function as both a negative regulator and a downstream target of p21ras. Here, we have investigated the role of GAP by using a transient expression assay with a fos luciferase reporter plasmid. We used GAP deletion mutants that lack the domain involved in interaction with p21ras and encode essentially only the SH2-SH3 domains. When these GAP deletion mutants were expressed, we observed a marked induction of fos promoter activity similar to induction by activated p21ras. Expression of a full-length GAP construct had no effect on the activity of the fos promoter. Activation of the fos promoter by these GAP SH2-SH3 regions was inhibited by cotransfection of a dominant inhibitory mutant of p21ras, Ras(Asn-17). Thus, the induction of gene expression by GAP SH2-SH3 domains is dependent on p21ras activity. Moreover, induction of fos promoter activity by GAP SH2-SH3 domains is increased severalfold after cotransfection of an activated mutant of p21ras, Ras(Leu-61), or insulin stimulation of A14 cells, both leading to an increase in the levels of GTP-bound p21ras. The combined effect of Ras(Leu-61) and the GAP deletion mutants was not inhibited by Ras(Asn-17), indicating that GAP SH2-SH3 domains do not function to activate endogenous p21ras but cooperate with another signal coming from active p21ras. These data suggest that GAP SH2-SH3 domains serve to induce gene expression by p21ras but that additional signals coming from p21ras are required for them to function.  相似文献   

2.
Since the biological role of phospholipase C (PLC) gamma1 in neuronal differentiation still barely understood, here, we report that overexpression of PLC gamma1 inhibits neurite outgrowth and prolonged proliferation ability of PLC gamma1 contribute to the alteration of cell cycle regulatory proteins, subsequently exiting from cell growth arrest. Deletion of the SH3 or the entire SH223 domains, but not deletion of the N-SH2 or both the N-SH2 and C-SH2 domains expressing cells abolishes the differentiation-inhibitory effects of PLC gamma1, displaying depression of PCNA and elevation of cyclin D1. Moreover, these cells declined CDK1 and CDK2 expression and increased p21WAF-1, accompanying with G2/M accumulation. Some antiproliferative reagents are able to restore neurite outgrowth in PLC gamma1 cells, showing G2/M arrest. Our findings suggest that the proliferation activity of PLC gamma1 via its SH3 domain may be coupled with the flight from growth arrest by NGF, thereby inhibiting neuronal differentiation.  相似文献   

3.
GRB2, a small protein comprising one SH2 domain and two SH3 domains, represents the human homologue of the Caenorhabditis elegans protein, sem-5. Both GRB2 and sem-5 have been implicated in a highly conserved mechanism that regulates p21ras signalling by receptor tyrosine kinases. In this report we show that in response to insulin, GRB2 forms a stable complex with two tyrosine-phosphorylated proteins. One protein is the major insulin receptor substrate IRS-1 and the second is the SH2 domain-containing oncogenic protein, Shc. The interactions between GRB2 and these two proteins require ligand activation of the insulin receptor and are mediated by the binding of the SH2 domain of GRB2 to phosphotyrosines on both IRS-1 and Shc. Although GRB2 associates with IRS-1 and Shc, it is not tyrosine-phosphorylated after insulin stimulation, implying that GRB2 is not a substrate for the insulin receptor. Furthermore, we have identified a short sequence motif (YV/IN) present in IRS-1, EGFR and Shc, which specifically binds the SH2 domain of GRB2 with high affinity. Interestingly, both GRB2 and phosphatidylinositol-3 (PI-3) kinase can simultaneously bind distinct tyrosine phosphorylated regions on the same IRS-1 molecule, suggesting a mechanism whereby IRS-1 could provide the core for a large signalling complex. We propose a model whereby insulin stimulation leads to formation of multiple protein--protein interactions between GRB2 and the two targets IRS-1 and Shc. These interactions may play a crucial role in activation of p21ras and the control of downstream effector molecules.  相似文献   

4.
A dominant inhibitory mutation of Ha-ras which changes Ser-17 to Asn-17 in the gene product p21 [p21 (Asn-17)Ha-ras] has been used to investigate the role of ras in neuronal differentiation of PC12 cells. The growth of PC12 cells, in contrast to NIH 3T3 cells, was not inhibited by p21(Asn-17)Ha-ras expression. However, PC12 cells expressing the mutant Ha-ras protein showed a marked inhibition of morphological differentiation induced by nerve growth factor (NGF) or fibroblast growth factor (FGF). These cells, however, were still able to respond with neurite outgrowth to dibutyryl cyclic AMP and 12-O-tetradecanoylphorbol-13-acetate (TPA). Induction of early-response genes (fos, jun, and zif268) by NGF and FGF but not by TPA was also inhibited by high levels of p21(Asn-17)Ha-ras. However, lower levels of p21(Asn-17) expression were sufficient to block neuronal differentiation without inhibiting induction of these early-response genes. Induction of the secondary-response genes SCG10 and transin by NGF, like morphological differentiation, was inhibited by low levels of p21(Asn-17) whether or not induction of early-response genes was blocked. Therefore, although inhibition of ras function can inhibit early-response gene induction, this is not required to block morphological differentiation or secondary-response gene expression. These results suggest that ras proteins are involved in at least two different pathways of signal transduction from the NGF receptor, which can be distinguished by differential sensitivity to p21(Asn-17)Ha-ras. In addition, ras and protein kinase C can apparently induce early-response gene expression by independent pathways in PC12 cells.  相似文献   

5.
In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.  相似文献   

6.
src family tyrosine kinases contain two noncatalytic domains termed src homology 3 (SH3) and SH2 domains. Although several other signal transduction molecules also contain tandemly occurring SH3 and SH2 domains, the function of these closely spaced domains is not well understood. To identify the role of the SH3 domains of src family tyrosine kinases, we sought to identify proteins that interacted with this domain. By using the yeast two-hybrid system, we identified p62, a tyrosine-phosphorylated protein that associates with p21ras GTPase-activating protein, as a src family kinase SH3-domain-binding protein. Reconstitution of complexes containing p62 and the src family kinase p59fyn in HeLa cells demonstrated that complex formation resulted in tyrosine phosphorylation of p62 and was mediated by both the SH3 and SH2 domains of p59fyn. The phosphorylation of p62 by p59fyn required an intact SH3 domain, demonstrating that one function of the src family kinase SH3 domains is to bind and present certain substrates to the kinase. As p62 contains at least five SH3-domain-binding motifs and multiple tyrosine phosphorylation sites, p62 may interact with other signalling molecules via SH3 and SH2 domain interactions. Here we show that the SH3 and/or SH2 domains of the signalling proteins Grb2 and phospholipase C gamma-1 can interact with p62 both in vitro and in vivo. Thus, we propose that one function of the tandemly occurring SH3 and SH2 domains of src family kinases is to bind p62, a multifunctional SH3 and SH2 domain adapter protein, linking src family kinases to downstream effector and regulatory molecules.  相似文献   

7.
SH2-B is required for nerve growth factor-induced neuronal differentiation   总被引:15,自引:0,他引:15  
Nerve growth factor (NGF) is essential for the development and survival of sympathetic and sensory neurons. NGF binds to TrkA, activates the intrinsic kinase activity of TrkA, and promotes the differentiation of pheochromocytoma (PC12) cells into sympathetic-like neurons. Several signaling molecules and pathways are known to be activated by NGF, including phospholipase Cgamma, phosphatidylinositol-3 kinase, and the mitogen-activated protein kinase cascade. However, the mechanism of NGF-induced neuronal differentiation remains unclear. In this study, we examined whether SH2-Bbeta, a recently identified pleckstrin homology and SH2 domain-containing signaling protein, is a critical signaling protein for NGF. TrkA bound to glutathione S-transferase fusion proteins containing SH2-Bbeta, and NGF stimulation dramatically increased that binding. In contrast, NGF was unable to stimulate the association of TrkA with a glutathione S-transferase fusion protein containing a mutant SH2-Bbeta(R555E) with a defective SH2 domain. When overexpressed in PC12 cells, SH2-Bbeta co-immunoprecipitated with TrkA in response to NGF. NGF stimulated tyrosyl phosphorylation of endogenous SH2-Bbeta as well as exogenously expressed GFP-SH2-Bbeta but not GFP-SH2-Bbeta(R555E). Overexpression of SH2-Bbeta(R555E) blocked NGF-induced neurite outgrowth of PC12 cells, whereas overexpression of wild type SH2-Bbeta enhanced NGF-induced neurite outgrowth. Overexpression of either wild type or mutant SH2-Bbeta(R555E) did not alter tyrosyl phosphorylation of TrkA, Shc, or phospholipase Cgamma in response to NGF or NGF-induced activation of ERK1/2, suggesting that SH2-Bbeta may initiate a previously unknown pathway(s) that is essential for NGF-induced neurite outgrowth. Taken together, these data indicate that SH2-Bbeta is a novel signaling molecule required for NGF-induced neuronal differentiation.  相似文献   

8.
The rab genes code for small GTP binding proteins that share with p21ras the ability to bind and hydrolyze GTP. They present significant sequence homologies with the products of YPT1 and SEC4, two small GTP binding proteins involved in the regulation of secretion in the yeast. Several rab genes are expressed in the developing and adult mouse brain. To test directly the possible involvement of these genes in neuronal differentiation, purified rab proteins produced in E. coli were introduced into neurons dissociated from E15 rat midbrain. The most striking effects were obtained with rab2 protein (rab2p). Compared with untreated cells, neurons loaded with rab2p presented an enhanced adhesion to the culture substratum. This phenomenon was visible 3 hr after seeding and was followed within 24 hr by a dramatic increase in neurite growth. Loading the same population of neurons with the products of four other rab genes either decreased neuronal adhesion and neurite growth or had no effect. These experiments suggest that the expression of rab2p plays an important role in neuronal differentiation.  相似文献   

9.
The adapter protein SH2-B has been shown to bind to activated nerve growth factor (NGF) receptor TrkA and has been implicated in NGF-induced neuronal differentiation and the survival of sympathetic neurons. However, the mechanism by which SH2-B enhances and maintains neurite outgrowth is unclear. We examined the ability of truncation mutants to regulate neuronal differentiation and observed that certain truncation mutants localized in the nucleus rather than in the cytoplasm or at the plasma membrane as reported for wild-type SH2-B beta. Addition of the nuclear export inhibitor leptomycin B caused both overexpressed wild-type and endogenous SH2-B beta to accumulate in the nucleus of both PC12 cells and COS-7 cells as did deletion of a putative nuclear export sequence (amino acids 224 to 233) or mutation of two critical lysines in that sequence. Deleting or mutating the nuclear export signal caused SH2-B beta to lose its ability to enhance NGF-induced differentiation of PC12 cells. Neither the NGF-induced phosphorylation of ERKs 1 and 2 nor their subcellular distribution was altered in PC12 cells stably expressing the nuclear export-defective SH2-B beta(L231A, L233A). These data provide strong evidence that SH2-B beta shuttles constitutively between the nucleus and cytoplasm. However, SH2-B beta needs continuous access to the cytoplasm and/or plasma membrane to participate in NGF-induced neurite outgrowth. These data also suggest that the stimulatory effect of SH2-B beta on NGF-induced neurite outgrowth of PC12 cells is either downstream of ERKs or via some other pathway yet to be identified.  相似文献   

10.
We have investigated the functional role of the SH2 domain of the 85-kDa subunit (p85) of the phosphatidylinositol 3-kinase in the insulin signal transduction pathway. Microinjection of a bacterial fusion protein containing the N-terminal SH2 domain of p85 inhibited insulin- and other growth factor-induced DNA synthesis by 90% and c-fos protein expression by 80% in insulin-responsive rat fibroblasts. The specificity of the fusion protein was examined by in vitro precipitation experiments, which showed that the SH2 domain of p85 can independently associate with both insulin receptor substrate 1 and the insulin receptor itself in the absence of detectable binding to other phosphoproteins. The microinjection results were confirmed through the use of an affinity-purified antibody directed against p85, which gave the same phenotype. Additional studies were carried out in another cell line expressing mutant insulin receptors which lack the cytoplasmic tyrosine residues with which p85 interacts. Microinjection of the SH2 domain fusion protein also inhibited insulin signaling in these cells, suggesting that association of p85 with insulin receptor substrate 1 is a key element in insulin-mediated cell cycle progression. In addition, coinjection of purified p21ras protein with the p85 fusion protein or the antibody restored DNA synthesis, suggesting that ras function is either downstream or independent of p85 SH2 domain interaction.  相似文献   

11.
Src homology (SH) domains of phospholipase C-gamma1 (PLC-gamma1) impair NGF-mediated PC12 cells differentiation. However, whether the enzymatic activity is also implicated in this process remains elusive. Here, we report that the enzymatic activity of phospholipase C-gamma1 (PLC-gamma1) is at least partially involved to the blockage of neuronal differentiation via an abrogation of MAPK activation, as well as sustained Akt activation. By contrast, Overexpression of WT-PLC-gamma1 exhibited sustained NGF-induced MAPK activation, and triggered transient Akt activation resulting in profound inhibition of neurite outgrowth. However, lipase-inactive mutant (LIM) PLC-gamma1 cells fail to suppress neurite outgrowth, although it contains intact SH domains, specifically enhancing the expression of cyclin D1 and p21 proteins, which regulate the function of retinoblastoma Rb protein. These observations show that the lipase inactive mutant of PLC-gamma1 does not alter NGF-induced neuronal differentiation via enzymatic inability and the odulation of cell cycle regulatory proteins independent on SH3 domain.  相似文献   

12.
We have investigated the roles of pp60c-src and p21c-ras proteins in transducing the nerve growth factor (NGF) and fibroblast growth factor (FGF) signals which promote the sympathetic neuronlike phenotype in PC12 cells. Neutralizing antibodies directed against either Src or Ras proteins were microinjected into fused PC12 cells. Each antibody both prevented and reversed NGF- or FGF-induced neurite growth, a prominent morphological marker for the neuronal phenotype. These data demonstrate the involvement of both pp60c-src and p21c-ras proteins in NGF and FGF actions in PC12 cells, and establish a physiological role for the pp60c-src tyrosine kinase in signal transduction pathways initiated by receptor tyrosine kinases in these cells. Additional microinjection experiments, using PC12 transfectants containing inducible v-src or ras oncogene activities, demonstrated a specific sequence of Src and Ras actions. Microinjection of anti-Ras antibody blocked v-src-induced neurite growth, but microinjection of anti-Src antibodies had no effect on ras oncogene-induced neurite growth. We propose that a cascade of Src and Ras actions, with Src acting first, is a significant feature of the signal transduction pathways for NGF and FGF. The Src-Ras cascade may define a functional cassette in the signal transduction pathways used by growth factors and other ligands whose receptors have diverse structures and whose range of actions on various cell types include mitogenesis and differentiation.  相似文献   

13.
A rat pheochromocytoma (PC12) cell line (designated MMTV-M17-5) expressing a dominant inhibitory mutant Ha-ras (Ha-ras Asn 17) protein was used to study nerve growth factor (NGF) induced neurite regeneration. Expression of the mutant p21 completely blocked NGF stimulated process formation in these cells. In contrast, neurite outgrowth induced by NGF treatment of primed MMTV-M17-5 cells was not significantly affected by the presence of Ha-ras Asn 17 protein. These observations suggest that, while ras function is required for NGF induced neuronal differentiation of PC12 cells, it is not needed to mediate NGF stimulated neurite regeneration.  相似文献   

14.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

15.
Wang TC  Chiu H  Chang YJ  Hsu TY  Chiu IM  Chen L 《PloS one》2011,6(10):e26433
SH2B adaptor protein family members (SH2B1-3) regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of immune system. No study so far addresses the role of SH2B3 in the nervous system. In this study, we provide evidence suggesting that SH2B3 is expressed in the cortex of embryonic rat brain. Overexpression of SH2B3 not only inhibits NGF-induced differentiation of PC12 cells but also reduces neurite outgrowth of primary cortical neurons. SH2B3 does so by repressing NGF-induced activation of PLCγ, MEK-ERK1/2 and PI3K-AKT pathways and the expression of Egr-1. SH2B3 is capable of binding to phosphorylated NGF receptor, TrkA, as well as SH2B1β. Our data further demonstrate that overexpression of SH2B3 reduces the interaction between SH2B1β and TrkA. Consistent with this finding, overexpressing the SH2 domain of SH2B3 is sufficient to inhibit NGF-induced neurite outgrowth. Together, our data demonstrate that SH2B3, unlike the other two family members, inhibits neuronal differentiation of PC12 cells and primary cortical neurons. Its inhibitory mechanism is likely through the competition of TrkA binding with the positive-acting SH2B1 and SH2B2.  相似文献   

16.
Many cellular signaling proteins contain SH3 (Src homology 3) domains that mediate protein interactions via specific proline-containing peptides. Unlike SH2 domains, whose interactions with tyrosine-containing peptides are promoted by phosphorylation of the SH2 binding site, the regulatory mechanism for SH3 interactions is unclear. p120 RasGAP (GTPase-activating protein), which contains an SH3 domain flanked by two SH2 domains, forms an abundant SH2-mediated complex with p190 RhoGAP in cells expressing activated tyrosine kinases. We have identified two closely linked tyrosine-containing peptides in p190 that bind simultaneously to the RasGAP SH2 domains upon p190 phosphorylation. This interaction is expected to bring the two SH2 domains into close proximity. Consequently, RasGAP undergoes a conformational change that results in a 100-fold increase in the accessibility of the target binding surface of its SH3 domain. These results indicate that the tandem arrangement of SH2 and SH3 domains found in a variety of cellular signaling proteins can provide a conformational mechanism for regulating SH3-dependent interactions through tyrosine phosphorylation. In addition, it appears that the role of p190 in the RasGAP signaling complex is to promote additional protein interactions with RasGAP via its SH3 domain.  相似文献   

17.
Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.  相似文献   

18.
The angiotensin II (Ang II) type 2 (AT(2)) receptor is an atypical seven-transmembrane domain receptor. Controversy surrounding this receptor concerns both the nature of the second messengers produced as well as its associated signaling mechanisms. Using the neuronal cell line NG108-15, we have reported previously that activation of the AT(2) receptor induced morphological differentiation in a p21(ras)-independent, but p42/p44(mapk)-dependent mechanism. The activation of p42/p44(mapk) was delayed, sustained, and had been shown to be essential for neurite elongation. In the present report, we demonstrate that activation of the AT(2) receptor rapidly, but transiently, activated the Rap1/B-Raf complex of signaling proteins. In RapN17- and Rap1GAP-transfected cells, the effects induced by Ang II were abolished, demonstrating that activation of these proteins was responsible for the observed p42/p44(mapk) phosphorylation and for morphological differentiation. To assess whether cAMP was involved in the activation of Rap1/B-Raf and neuronal differentiation induced by Ang II, NG108-15 cells were treated with stimulators or inhibitors of the cAMP pathway. We found that dibutyryl cAMP and forskolin did not stimulate Rap1 or p42/p44(mapk) activity. Furthermore, adding H-89, an inhibitor of protein kinase A, or Rp-8-Br-cAMP-S, an inactive cAMP analog, failed to impair p42/p44(mapk) activity and neurite outgrowth induced by Ang II. The present observations clearly indicate that cAMP, a well known stimulus of neuronal differentiation, did not participate in the AT(2) receptor signaling pathways in the NG108-15 cells. Therefore, the AT(2) receptor of Ang II activates the signaling modules of Rap1/B-Raf and p42/p44(mapk) via a cAMP-independent pathway to induce morphological differentiation of NG108-15 cells.  相似文献   

19.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献   

20.
M S Qui  S H Green 《Neuron》1992,9(4):705-717
Expression of oncogenic ras in PC12 cells causes neuronal differentiation and sustained protein tyrosine phosphorylation and activity of extracellular signal-regulated kinases (ERKs), p42erk2 and p44erk1. Oncogenic N-ras-induced neuronal differentiation is inhibited by compounds that block ERK protein tyrosine phosphorylation or ERK activity, indicating that ERKs are not only activated by p21ras but serve as the primary downstream effectors of p21ras. Treatment of PC12 cells with nerve growth factor or fibroblast growth factor results in neuronal differentiation and in a sustained elevation of p21ras activity, of ERK activity, and of ERK tyrosine phosphorylation. Epidermal growth factor, which does not cause neuronal differentiation, stimulates only transient (< 1 hr) activation of p21ras and ERKs. These data indicate that transient activation of p21ras and, consequently, ERKs is not sufficient for induction of neuronal differentiation. Prolonged ERK activity is required: a consequence of sustained activation of p21ras by the growth factor receptor protein tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号