首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of vascular endothelial, cells (ECs) to respond to fluid mechanical forces associated with blood flow is essential for flow-mediated vasoregulation and arterial wall remodeling. Abnormalities in endothelial responses to flow also play a role in the development of atherosclerosis. Although our understanding of the endothelial signaling pathways stimulated by flow has greatly increased over the past two decades, the mechanisms by which ECs sense flow remain largely unknown. Activation of flow-sensitive ion channels is among the fastest known endothelial responses to flow; therefore, these ion channels have been proposed as candidate flow sensors. This review focuses on: 1) describing the various types of flow-sensitive ion channels that have been reported in ECs, 2) discussing the implications of activation of these ion channels for endothelial function, and 3) proposing candidate mechanisms for activation of flow-sensitive ion channels.  相似文献   

2.
Shear stress,vascular remodeling and neointimal formation   总被引:10,自引:0,他引:10  
The role of shear stress in atherosclerosis has been well documented. However, its role in restenosis was underexposed. In this paper a novel in vivo measuring technique and several of its applications related to restenosis will be described. The technique consists of a combination of 3D reconstruction of blood vessels and computational fluid dynamics (CFD). The 3D imaging techniques use either of 3D intravascular ultrasound (IVUS) as a stand-alone technique or a fusion of biplane angiography and IVUS (ANGUS). CFD is applied in order to relate local shear stress distribution to the morphology of the vessel wall. In the applications of these techniques it will be demonstrated that shear stress plays a role in the prediction of neointimal formation in in-stent restenosis and in vascular remodeling after balloon angioplasty. Attempts to locally increase shear stress by a newly developed flow divider indicate that shear stress reduce in-stent neointimal formation by 50%.  相似文献   

3.
The study of endothelial development has been intertwined with hematopoiesis since the early 20th century when a bi-potential cell (hemangioblast) was noted to produce both endothelial and hematopoietic cells. Since then, ideas regarding the nature of connection between the vascular and hematopoietic systems have ranged from a tenuous association to direct lineage origination. In this review, historical data that spans hematopoietic development is examined within the context of hemogenic endothelium. Hemogenic endothelium, a specialized endothelial population capable of hematopoiesis, is an emerging theory that has recently gained momentum. Evidence across species and decades are reviewed, as are the possible modulators of the phenomenon, which include pathways that specify definitive hematopoiesis (Runx1), arterial identity (Notch1), as well as physiological and developmental factors.  相似文献   

4.
In the central nervous system of both vertebrates and invertebrates inhibitory neurotransmission is mainly achieved through activation of γ-aminobutyric acid (GABA) receptors. Extensive studies have established the structural and pharmacological properties of vertebrate GABA receptors. Although the vast majority of insect GABA-sensitive responses share some properties with vertebrate GABAA receptors, peculiar pharmacological properties of these receptors led us to think that several GABA-gated chloride channels are present in insects. We describe here the pharmacological properties of two GABA receptor subtypes coupled to a chloride channel on dorsal unpaired median (DUM) neurones of the adult male cockroach. Long applications of GABA induce a large biphasic hyperpolarization, consisting of an initial transient hyperpolarization followed by a slow phase of hyperpolarization that is not quickly desensitized. With GABA, the transient hyperpolarization is sensitive to picrotoxinin, fipronil and dieldrin whereas the slow response is insensitive to these insecticides.When GABA is replaced by muscimol and cis-4-aminocrotonic acid (CACA) a biphasic hyperpolarization consisting of an initial transient hyperpolarization followed by a sustained phase is evoked which is blocked by picrotoxinin and fipronil. Exposure to dieldrin decreases only the early phase of the muscimol and CACA-induced biphasic response, suggesting that two GABA-gated chloride channel receptor subtypes are present in DUM neurones. This study describes, for the first time, a dieldrin resistant component different to the dieldrin- and picrotoxinin-resistant receptor found in several insect species.  相似文献   

5.
Transport mechanisms in chloride channels.   总被引:1,自引:0,他引:1  
A comparative study of lipids and proteins in sarcoplasmic reticulum (SR) from rabbit and flounder has been undertaken. The protein/phospholipid ratio (w/w) was 3:1 in flounder SR (FSR) and 2.2:1 in rabbit SR (RSR). Both membranes had similar contents of PC (70%) and PI (6%). PE constituted 15% in RSR and 21% in FSR. PS and sphingomyelin were minor components of both SR (less than 4%). There were differences in the unsaturated chains of the total lipid extracts, PC, PE, and PI between FSR and RSR. RSR was high in linoleate and arachidonate while FSR contained substantial amounts of eicosapentaenoate and docosahexaenoate. FTIR spectroscopy revealed that the lipids of both membranes did not undergo a phase transition between 0 and 50 degrees C. The lipids were in the liquid-crystalline state at physiological temperatures and underwent monotonic increases in conformational disorder as the temperature was raised. CD spectra indicated higher content of alpha-helical structure of proteins in RSR than in FSR. Increasing temperature caused diminution of alpha-helix content. Relatively large decreases in ellipticity were observed between 20 degrees C and 40 degrees C for FSR and 30 degrees C and 60 degrees C for RSR. Measurements of intrinsic tryptophan fluorescence as a function of temperature gave similar results for membrane proteins in both FSR and RSR. The rate of change of tryptophan fluorescence and fluorescence lifetimes was constant over the temperature ranges studied, and no abrupt shifts in fluorescence occurred in the temperature regions where ellipticity decreased rapidly.  相似文献   

6.
Coronavirus disease-2019 (COVID-19), the disease caused by severe acute respiratory syndrome-coronavirus-2, has claimed more than 4.4 million lives worldwide (as of 20 August 2021). Severe cases of the disease often result in respiratory distress due to cytokine storm, and mechanical ventilation is required. Although, the lungs are the primary organs affected by the disease, more evidence on damage to the heart, kidney, and liver is emerging. A common link in these connections is the cardiovascular network. Inner lining of the blood vessels, called endothelium, is formed by a single layer of endothelial cells. Several clinical manifestations involving the endothelium have been reported, such as its activation via immunomodulation, endotheliitis, thrombosis, vasoconstriction, and distinct intussusceptive angiogenesis (IA), a unique and rapid process of blood-vessel formation by splitting a vessel into two lumens. In fact, the virus directly infects the endothelium via TMPRSS2 spike glycoprotein priming to facilitate ACE-2-mediated viral entry. Recent studies have indicated a significant increase in remodeling of the pulmonary vascular bed via intussusception in patients with COVID-19. However, the lack of circulatory biomarkers for IA limits its detection in COVID-19 pathogenesis. In this review, we describe the implications of angiogenesis in COVID-19, unique features of the pulmonary vascular bed and its remodeling, and a rapid and non-invasive assessment of IA to overcome the technical limitations in patients with COVID-19.  相似文献   

7.
8.
The physiologically indispensable chloride channel (CLC) family is split into two classes of membrane proteins: chloride channels and chloride/proton antiporters. In this article we focus on the relationship between these two groups and specifically review the role of protons in chloride-channel gating. Moreover, we discuss the evidence for proton transport through the chloride channels and explore the possible pathways that the protons could take through the chloride channels. We present results of a mutagenesis study, suggesting the feasibility of one of the pathways, which is closely related to the proton pathway proposed previously for the chloride/proton antiporters. We conclude that the two groups of CLC proteins, although in principle very different, employ similar mechanisms and pathways for ion transport.  相似文献   

9.
In recent years, gene-targeting studies in mice have elucidated many molecular mechanisms in vascular biology. However, it has been difficult to apply this approach to the study of postnatal animals because mutations affecting the vasculature are often embryonically lethal. We have therefore generated transgenic mice that express a tamoxifen-inducible form of Cre recombinase (iCreER(T2)) in vascular endothelial cells using a phage artificial chromosome (PAC) containing the Pdgfb gene (Pdgfb-iCreER mice). This allows the genetic targeting of the vascular endothelium in postnatal animals. We tested efficiency of tamoxifen-induced iCre recombinase activity with ROSA26-lacZ reporter mice and found that in newborn animals recombination could be achieved in most capillary and small vessel endothelial cells in most organs including the central nervous system. In adult animals, recombination activity was also widespread in capillary beds of skeletal muscle, heart, skin, and gut but not in the central nervous system where only a subpopulation of endothelial cells was labeled. We also tested recombination efficiency in a subcutaneous tumor model and found recombination activity in all detectable tumor blood vessels. Thus, Pdgfb-iCreER mice are a valuable research tool to manipulate endothelial cells in postnatal mice and study tumor angiogenesis.  相似文献   

10.
Lysosomal membrane vesicles purified from rat liver contain a basal chloride conductance that was enhanced in the presence of ATP, non-hydrolysable ATP-analogs and, to a lesser extent, GTP. Other nucleotides, including AMP, ADP and cAMP, as well as CTP and UTP were not effective. Following fusion of the vesicles with an artificial phosphatidylethanolamine/phosphatidylserine bilayer, we found that ATP gamma S dramatically increased the incidence of 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS)-sensitive chloride channels with a unitary slope conductance of approx. 40 pS in 300 mM/50 mM KCl buffers and 120 pS in symmetrical 300 mM KCl buffers. Since similar results were obtained with AMP-PNP, the results indicate that lysosomes contain a chloride permeable ion channel that is activated by ATP through allosteric interaction.  相似文献   

11.
Mean and mean square number are studied for age-structured populations with serially correlated temporally fluctuating vital rates. Results are that (1) Moments of population number can be used effectively to analyse growth rates of the coefficient of variation and an approximate median population number. (2) Analytical approximations to the growth rates of moments reveal dynamic consequences of covarying phenotypic traits and of temporal correlation along environmental sequences. (3) Dynamic properties can be explicitly related to the static sensitivity of an average vital rate matrix. (4) The use of (1), (2) and (3) allows an extension of many applications of static vital rate theory to dynamics with fluctuating rates.  相似文献   

12.
Biomechanics and Modeling in Mechanobiology - We study the steady hemodynamics in physiological elastic microvessels proposing an advanced fluid–structure interaction model. The arteriolar...  相似文献   

13.
Previously, we observed that CRL-8018 hybridoma cells were more sensitive to well-defined viscometric shear during the lag and stationary phases than during the exponential phase of batch cultures. Some potential hypotheses for explaining the increase in shear sensitivity are (1) nutrient limitations that result in a decrease in production of specific cellular components responsible for the mechanical strength of the cell, (2) nutrient limitations that lead to synchronization of the culture in a cell cycle phase that is more sensitive to shear, or (3) a link between cell growth and shear sensitivity, such that slowly growing cells are more sensitive to shear. Here, the duration of the exponential phase was increased with use of fed-batch, and the effect on shear sensitivity of the cultures was measured with a viscometric technique. Extension of exponential growth resulted in an increased period during which the cells were insensitive to shear. Additionally, the shear sensitivity of the cells was constant over a wide range of growth rates and metabolic yields in chemostat cultures. These observations suggest that as long as the cells are actively (exponentially) growing, their shear sensitivity does not depend on the growth rate or metabolic state of the cell as expressed by metabolic yields. Thus, hypothesis 3 above can be dismissed.  相似文献   

14.
Fluid shear stress and the vascular endothelium: for better and for worse   总被引:28,自引:0,他引:28  
As blood flows, the vascular wall is constantly subjected to physical forces, which regulate important physiological blood vessel responses, as well as being implicated in the development of arterial wall pathologies. Changes in blood flow, thus generating altered hemodynamic forces are responsible for acute vessel tone regulation, the development of blood vessel structure during embryogenesis and early growth, as well as chronic remodeling and generation of adult blood vessels. The complex interaction of biomechanical forces, and more specifically shear stress, derived by the flow of blood and the vascular endothelium raise many yet to be answered questions:How are mechanical forces transduced by endothelial cells into a biological response, and is there a "shear stress receptor"?Are "mechanical receptors" and the final signaling pathways they evoke similar to other stimulus-response transduction systems?How do vascular endothelial cells differ in their response to physiological or pathological shear stresses?Can shear stress receptors or shear stress responsive genes serve as novel targets for the design of diagnostic and therapeutic modalities for cardiovascular pathologies?The current review attempts to bring together recent findings on the in vivo and in vitro responses of the vascular endothelium to shear stress and to address some of the questions raised above.  相似文献   

15.
Shear stress (SS) is thought to be constant throughout the vascular system. Evidence for this supposition is scarce, however. To verify this hypothesis in vivo, we assessed common carotid (CCA) and brachial artery (BA) peak and mean wall shear rate (SR) noninvasively in 10 healthy volunteers (23.7 +/- 3.4 yr) with an ultrasound SR estimation system. SS was estimated from SR and calculated whole blood viscosity. SR was higher (P < 0.05) in the CCA (mean: 359 +/- 111 s(-1); peak: 1,047 +/- 345 s(-1)) than in the BA (mean: 95 +/- 24 s(-1); peak: 770 +/- 170 s(-1)). Whole blood viscosity was higher in the BA than in the CCA (5.1 +/- 0.7 vs. 3.3 +/- 0.6 mPa. s; P < 0.001). Peak SS did not differ between the CCA and the BA, whereas mean SS was significantly higher in the CCA (1.15 +/- 0.21 Pa) than in the BA (0.48 +/- 0.15 Pa; P < 0.001). These results demonstrate that BA SS strongly deviates from CCA SS in vivo.  相似文献   

16.
Cullin-RING ubiquitin ligases are the largest Ubiquitin ligase family in eukaryotes and are multi-protein complexes. In these complexes, the Cullin protein serves as a scaffold to connect two functional modules of the ligases, the catalytic subunit and substrate-binding subunit. KLHL20 is a substrate-binding subunit of Cullin3 (Cul3) ubiquitin ligase. Recent studies have identified a number of substrates of KLHL20-based ubiquitin ligase. Through ubiquitination of these substrates, KLHL20 elicits diverse cellular functions, some of which are associated with human diseases. Furthermore, the functions, subcellular localizations, and expression of KLHL20 are regulated by several physiological and stressed signals, which allow KLHL20 to preferentially act on certain substrates to response to these signals. Here, we provide a summary of the functions and regulations of KLHL20 in several physiological processes and stress responses and its disease implications.  相似文献   

17.
Major advances in our understanding of how endothelial cells sense and respond to haemodynamic forces and, more specifically, to fluid shear stress have been achieved during the past 3 years. These include definition of potential shear stress receptors and multiple signalling pathways that mediate shear stress regulation of gene expression. A few studies have also pointed to the unique effects of complex shear stress on endothelial activation, thus leading to better understanding of the mechanisms that lead to the development of atherosclerosis.  相似文献   

18.
Magnesium, an essential intracellular cation, is critically involved in many biochemical reactions involved in the regulation of vascular tone and integrity. Decreased magnesium concentration has been implicated in altered vascular reactivity, endothelial dysfunction, vascular inflammation, and structural remodeling, processes important in vascular changes and target organ damage associated with hypertension. Until recently, very little was known about mechanisms regulating cellular magnesium homeostasis, and processes controlling transmembrane magnesium transport had been demonstrated only at the functional level. Two cation channels of the transient receptor potential melastatin (TRPM) cation channel family have now been identified as magnesium transporters, TRPM6 and TRPM7. These unique proteins, termed chanzymes because they possess a channel and a kinase domain, are differentially expressed, with TRPM6 being found primarily in epithelial cells and TRPM7 occurring ubiquitously. Vascular TRPM7 is modulated by vasoactive agents, pressure, stretch, and osmotic changes and may be a novel mechanotransducer. In addition to its magnesium transporter function, TRPM7 has been implicated as a signaling kinase involved in vascular smooth muscle cell growth, apoptosis, adhesion, contraction, cytoskeletal organization, and migration, important processes involved in vascular remodeling associated with hypertension and other vascular diseases. Emerging evidence suggests that vascular TRPM7 function may be altered in hypertension. This review discusses the importance of magnesium in vascular biology and implications in hypertension and highlights the transport systems, particularly TRPM6 and TRPM7, which may play a role in the control of vascular magnesium homeostasis. Since the recent identification and characterization of Mg2+-selective transporters, there has been enormous interest in the field. However, there is still a paucity of information, and much research is needed to clarify the exact mechanisms of magnesium regulation in the cardiovascular system and the implications of aberrant transmembrane magnesium transport in the pathogenesis of hypertension and other vascular diseases.  相似文献   

19.
R M Nerem 《Biorheology》1984,21(4):565-569
The evidence for a hemodynamic involvement and possible mechanisms by which hemodynamic-related events could influence the arterial wall, and in particular the vascular endothelium, are reviewed and used to speculate on the role of fluid mechanics in atherogenesis and specifically in lesion localization. The evidence presented suggests that it is vascular geometry, and the way it influences the local detailed flow properties, which is the primary determinant of a hemodynamic effect on the arterial wall and in the initiation of atherosclerosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号