首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exchange of individuals among populations can have strong effects on the dynamics and persistence of a given population. Yet, estimation of immigration rates remains one of the greatest challenges for animal demographers. Little empirical knowledge exists about the effects of immigration on population dynamics. New integrated population models fitted using Bayesian methods enable simultaneous estimation of fecundity, survival and immigration, as well as the growth rate of a population of interest. We applied this novel analytical framework to the demography of two populations of long-distance migratory birds, hoopoe Upupa epops and wryneck Jynx torquilla, in a study area in south-western Switzerland. During 2002–2010, the hoopoe population increased annually by 11%, while the wryneck population remained fairly stable. Apparent juvenile and adult survival probability was nearly identical in both species, but fecundity and immigration were slightly higher in the hoopoe. Hoopoe population growth rate was strongly correlated with juvenile survival, fecundity and immigration, while that of wrynecks strongly correlated only with immigration. This indicates that demographic components impacting the arrival of new individuals into the populations were more important for their dynamics than demographic components affecting the loss of individuals. The finding that immigration plays a crucial role in the population growth rates of these two rare species emphasizes the need for a broad rather than local perspective for population studies, and the development of wide-scale conservation actions.  相似文献   

2.
The understanding of how variation of demographic rates translates into variation of population growth is a central aim in population ecology. Besides stochastic and deterministic factors, the spatial extent and the isolation of a local population may have an impact on the contribution of the different demographic components. Using long-term demographic data we performed retrospective population analyses of four little owl ( Athene noctua ) populations with differential spatial extent and degree of isolation to assess the contribution of demographic rates to the variation of the growth rate (λ) of each local population and to the difference of λ among populations. In all populations variation of fecundity contributed least to variation of λ, and variation of adult survival contributed most to variation of λ in three of four populations. Between population comparisons revealed that differences mainly stem from differences of immigration and juvenile local survival. The relative importance of immigration to λ tended to decrease with increasing spatial extent and isolation of the local populations. None of the four local populations was self-sustainable. Because the local populations export and import individuals, they can be considered as open recruitment systems in which part of the recruited breeding birds are not produced locally. The spatial extent and the degree of isolation of a local population have an impact on local population dynamics; hence these factors need to be considered in studies about local population dynamics and for deriving conservation measures.  相似文献   

3.
Empirical studies of the spatiotemporal dynamics of populations are required to better understand natural fluctuations in abundance and reproductive success, and to better target conservation and monitoring programmes. In particular, spatial synchrony in amphibian populations remains little studied. We used data from a comprehensive three year study of natterjack toad Bufo calamita populations breeding at 36 ponds to assess whether there was spatial synchrony in the toad breeding activity (start and length of breeding season, total number of egg strings) and reproductive success (premetamorphic survival and production of metamorphs). We defined a novel approach to assess the importance of short‐term synchrony at both local and regional scales. The approach employs similarity indices and quantifies the interaction between the temporal and spatial components of populations using mixed effects models. There was no synchrony in the toad breeding activity and reproductive success at the local scale, suggesting that populations function as individual clusters independent of each other. Regional synchrony was apparent in the commencement and duration of the breeding season and in the number of egg strings laid (indicative of female population size). Regional synchrony in both rainfall and temperature are likely to explain the patterns observed (e.g. Moran effect). There was no evidence supporting regional synchrony in reproductive success, most likely due to spatial variability in the environmental conditions at the breeding ponds, and to differences in local population fitness (e.g. fecundity). The small scale asynchronous dynamics and regional synchronous dynamics in the number of breeding females indicate that it is best to monitor several populations within a subset of regions. Importantly, variations in the toad breeding activity and reproductive success are not synchronous, and it is thus important to consider them both when assessing the conservation status of pond‐breeding amphibians.  相似文献   

4.
The demography of a population is often reduced to the apparent (or local) survival of individuals and their realised fecundity within a study area defined according to logistical constraints rather than landscape features. Such demographics are then used to infer whether a local population contributes positively to population dynamics across a wider landscape context. Such a simplistic approach ignores a fundamental process underpinning population dynamics: dispersal. Indeed, it has long been accepted that immigration contributed by dispersers that emigrated from neighbouring populations may strongly influence the net growth of a local population. To date however, we lack a clear picture of how widely immigration rate varies both among and within populations, in relation to extrinsic and intrinsic ecological conditions, even for the best‐studied avian and mammalian populations. This empirical knowledge gap precludes the emergence of a sound conceptual framework that ought to inform conservation and population ecology. This review, conducted on both birds and mammals, has thus three complementary objectives. First, we describe and evaluate the relative merits of methods used to quantify immigration and how they relate to widely applicable metrics. We identify two simple and unifying metrics to measure immigration: the immigration rate it defined as the ratio of the number of immigrants present in the population at time t + 1 and the total breeding population in year t, and πt , the proportion of immigrants among new recruits (i.e. new breeders). Two recently developed methods are likely to provide the most valuable data on immigration in the near future: individual parentage (rather than population) assignments based on genetic sampling, and spatially explicit integrated population models combining multiple sources of demographic data (survival, fecundity and population counts). Second, we report on a systematic literature review of studies providing a quantitative measure of immigration. Although the diversity of methods employed precludes detailed analyses, it appears that the number of immigrants exceeds locally born individuals in recruitment for most avian populations (median πt  = 0.57, N = 45 estimates from 37 studies), a figure twofold higher than estimated for mammalian populations (median πt  = 0.26, N = 33 estimates from 11 studies). Third, recent quantitative studies reveal that immigration can be the main driver of temporal variation in population growth rates, across a wide array of demographic and spatial contexts. To what extent immigration acts as a regulatory process has however been considered only rarely to date and deserves more attention. Overall, it is likely that most populations benefit from immigrants without necessarily being sink populations. Furthermore, we suggest that quantitative estimates of immigration should be core to future demographic studies and plead for more empirical evidence about the ways in which immigration interacts with local demographic processes to shape population dynamics. Finally, we discuss how to tackle spatial population dynamics by exploring, beyond the classical source–sink framework, the extent to which populations exchange individuals according to spatial scale and type of population distribution throughout the landscape.  相似文献   

5.
Understanding biodiversity changes in the Anthropocene (e.g. due to climate and land‐use change) is an urgent ecological issue. This important task is challenging because global change effects and species responses are dependent on the spatial scales considered. Furthermore, responses are often not immediate. However, both scale and time delay issues can be tackled when, at each study site, we consider dynamics in both observed and dark diversity. Dark diversity includes those species in the region that can potentially establish and thrive in the local sites’ conditions but are currently locally absent. Effectively, dark diversity connects biodiversity at the study site to the regional scales and defines the site‐specific species pool (observed and dark diversity together). With dark diversity, it is possible to decompose species gains and losses into two space‐related components: one associated with local dynamics (species moving from observed to dark diversity and vice versa) and another related to gains and losses of site‐specific species pool (species moving to and from the pool after regional immigration, regional extinction or change in local ecological conditions). Extinction debt and immigration credit are useful to understand dynamics in observed diversity, but delays might happen in species pool changes as well. In this opinion piece we suggest that considering both observed and dark diversity and their temporal dynamics provides a deeper understanding of biodiversity changes. Considering both observed and dark diversity creates opportunities to improve conservation by allowing to identify species that are likely to go regionally extinct as well as foreseeing which of the species that newly arrive to the region are more likely to colonize local sites. Finally, by considering temporal lags and species gains and losses in observed and dark diversity, we combine phenomena at both spatial and temporal scales, providing a novel tool to examine biodiversity change in the Anthropocene.  相似文献   

6.
ABSTRACT An accurate understanding of factors influencing survival and how they affect population growth are required to determine the best conservation strategies for small populations, especially near the limit of a species' range. We estimated adult and juvenile survival for a small population of the threatened western snowy plover (Charadrius alexandrinus nivosus) in coastal northern California over 7 years (2001–2007). We also evaluated population structure and growth to determine the relative importance of immigration and local recruitment. Apparent survival for adult males (φ = 0.61 ± 0.08) was greater than that of adult females (φ = 0.50 ± 0.11), and survival of adults was greater than for juveniles (φ = 0.40 ± 0.06). An algebraic assessment of population growth (Λ) revealed that fecundity and survival were insufficient to maintain the population (Λ = 0.66–0.77), whereas estimates based on consecutive annual counts (Λ = 0.96 ± 0.26) and a Pradel model (Λ = 0.92 ± 0.11) suggested the population was more stable. These results, combined with annual variation in the number of newly marked plovers, indicate that the local population was maintained by immigration and can be classified as a sink. Management actions aimed at increasing fecundity, including predator control and greater restrictions on human activity, may be necessary to maintain this population; actions aimed at increasing adult survival are more challenging.  相似文献   

7.
Evolutionary studies on optimal decisions or conservation guidelines are often derived by generalising patterns from a single population, while inter‐population variability in life‐history traits is seldom considered. We investigated here how survival and recruitment probabilities changed with age at different geographical scales using the encounter histories of 5523 European storm petrels from three Mediterranean colonies, and also how our estimates of these parameters might be expected to affect population growth rates using population matrix models. We recorded similar patterns among colonies, but also important biological differences. Local survival, recruitment and breeding success increased with age at all colonies; the most distant of three colonies (Marettimo Is.) showed the largest differences. Strikingly, differences in recruitment were also found between two adjacent colonies (two caves from Benidorm Is.). Birds marked as adults from Marettimo and Benidorm colonies had a different survival, whereas we found no differences within Benidorm. Differences in survival were no longer apparent between the two islands at the end of the study following a reduction in predation by specialist gulls at Benidorm. Since birds marked as fledglings mostly recruited near the end of the study, their overall survival was high and in turn similar among colonies. Results from our population matrix models suggested that different age‐dependent patterns of demographic parameters can lead to similar population growth rates. Variability appeared to be greater for recruitment and the most sensitive parameter was adult survival. Thus conservation actions targeting this vulnerable species should focus on factors influencing adult survival. Differences in survival and recruitment among colonies could reflect the spatial heterogeneity in mortality due to predation and colony‐specific density dependent processes. Results highlight the importance of taking into account the potential spatio‐temporal heterogeneity among populations in vital rates, even in those traits that life‐history theory considers less important in driving population dynamics.  相似文献   

8.
Determining demographic rates in wild animal populations and understanding why rates vary are important challenges in population ecology and conservation. Whereas reproductive success is reported frequently for many songbird species, there are relatively few corresponding estimates of annual survival for widespread populations of the same migratory species. We incorporated mark–recapture data into Cormack–Jolly–Seber models to estimate annual apparent survival and recapture rates of adult male and female tree swallows Tachycineta bicolor in eight local breeding populations across North America for periods of 7–33 yr. We found strong site‐specific and annual variation in apparent survival rates of adult swallows, and evidence of higher survival or site fidelity among males than females. There were no strong associations between putative overwintering region and survival. Strength and patterns of winter climate‐apparent survival relationships varied across four sites monitored for >15 yr; at one site, spring pond conditions, local spring precipitation and, to a lesser extent, winter North Atlantic Oscillation Index were credible predictors of annual apparent survival. Further work is needed to evaluate how survival is related to environmental conditions throughout the annual cycle and how these factors affect population dynamics of swallows and related species of conservation concern.  相似文献   

9.
Demographic studies of imperiled populations can aid managers in planning conservation actions. However, applicability of findings for a single population across a species’ range is sometimes questionable. We conducted long-term studies (8 and 9 years, respectively) of 2 populations of the lizard Phrynosoma cornutum separated by 1000 km within the historical distribution of the species. The sites were a 15-ha urban wildlife reserve on Tinker Air Force Base (TAFB) in central Oklahoma and a 6000-ha wildland site in southern Texas, the Chaparral Wildlife Management Area (CWMA). We predicted a trade-off between the effect of adult survival and fecundity on population growth rate (λ), leading to population-specific contributions of individual vital rates to λ and individualized strategies for conservation and management of this taxon. The CWMA population had lower adult survival and higher fecundity than TAFB. As predicted, there was a trade-off in the effects of adult survival and fecundity on λ between the two sites; fecundity affected λ more at CWMA than at TAFB. However, adult survival had the smallest effect on λ in both populations. We found that recruitment in P. cornutum most affected λ at both sites, with hatchling survival having the strongest influence on λ. Management strategies focusing on hatchling survival would strongly benefit both populations. As a consequence, within the constraint of the need to more accurately estimate hatchling survival, managers across the range of species such as P. cornutum could adopt similar management priorities with respect to stage classes, despite intra-population differences in population vital rates.  相似文献   

10.
The application of uniform conservation schemes often fails to account for small-scale spatial variation in the drivers of population decline. Demographic comparisons of imperilled populations across locations are therefore crucial for successful conservation, but progress is hampered by lack of long-term data from more than a single population. The recent large-scale decline of eider ducks (Somateria mollissima) in the Baltic Sea is ideal for determining to what extent mechanisms underlying population decline can be extrapolated over larger areas. We utilized stochastic demographic methods incorporating both environmental and sampling variation to assess small-scale spatial and temporal variation in the population dynamics of eiders at Söderskär (eastern range-margin) and Tvärminne (core breeding area), situated 130 km apart. The stochastic growth rate models accurately predicted the observed differences in the rate of decline between sites and time periods. At Söderskär, established breeder survival had by far the greatest elasticity, whereas elasticity was more evenly distributed among vital rates at Tvärminne. Although the study sites showed the single largest difference in fecundity, stochastic life table response experiment analyses revealed that reduced adult female survival at Tvärminne mainly determined the observed difference in growth rates between sites. In contrast, reduced fecundity primarily differentiated the past population increase from the present population decline at Söderskär. Our results demonstrate that different mechanisms may be associated with population decline across adjacent geographic locations, and indicate that dispersal of first-time breeders may be important for population dynamics. Safeguarding adult female survival and/or fecundity should be prioritized in management efforts.  相似文献   

11.
Populations of Afro‐Palearctic migrant birds have shown severe declines in recent decades. To identify the causes of these declines, accurate measures of both demographic rates (seasonal productivity, apparent survival, immigration) and environmental parameters will allow conservation and research actions to be targeted effectively. We used detailed observations of marked breeding birds from a ‘stronghold’ population of whinchats Saxicola rubetra in England (stable against the declining European trend) to reveal both on‐site and external mechanisms that contribute to population change. From field data, a population model was developed based on demographic rates from 2011 to 2014. Observed population trends were compared to the predicted population trends to assess model‐accuracy and the influence of outside factors, such as immigration. The sensitivity of the projected population growth rate to relative change in each demographic rate was also explored. Against expectations of high productivity, we identified low seasonal breeding success due to nocturnal predation and low apparent first‐year survival, which led to a projected population growth rate (λ) of 0.818, indicating a declining trend. However, this trend was not reflected in the census counts, suggesting that high immigration was probably responsible for buffering against this decline. Elasticity analysis indicated λ was most sensitive to changes in adult survival but with covariance between demographic rates accounted for, most temporal variation in λ was due to variation in productivity. Our study demonstrates that high quality breeding habitat can buffer against population decline but high immigration and low productivity will expose even such stronghold populations to potential decline or abandonment if either factor is unsustainable. First‐year survival also appeared low, however this result is potentially confounded by high natal dispersal. First‐year survival and/or dispersal remains a significant knowledge gap that potentially undermines local solutions aimed at counteracting low productivity.  相似文献   

12.
Species of conservation concern, or those in conflict with man, are most efficiently managed with an understanding of their population dynamics. European bats exemplify the need for successful and cost‐effective management for both reasons, often simultaneously. Across Europe, bats are protected, and the concept of Favourable Conservation Status (FCS) is used as a key tool for the assessment and licensing of disruptive actions to populations. However, for efficient decision‐making, this assessment requires knowledge on the demographic rates and long‐term dynamics of populations. We used capture–mark–recapture to describe demographic rates for the Serotine bat (Eptesicus serotinus) at two sites in England and investigate the transition rates between three stages: juveniles, immatures, and breeders. We then use these rates in an individual‐based population dynamics model to investigate the expected trajectories for both populations. Our results demonstrate for the first time the presence and scale of temporal variation in this species' demography. We describe the lengthy prereproductive period (3.5 years) that female Serotines experience. Finally, we show how site‐specific variation in demographic rates can produce divergent population trajectories. Effective management of European bat populations can be achieved through the understanding of life histories, and local demographic rates and population dynamics, in order to anticipate the presence of source and sink sites in the landscape. Using the Serotine bat in England, we show that these can be obtained from rigorous and systematic studies of long‐term demographic datasets.  相似文献   

13.
Wild horses (Equus caballus) are a non‐native species occupying over 2800 km2 of the nationally significant Australian Alps National Parks. We estimated key demographic parameters (fecundity, adult and juvenile survival and annual finite population growth rate) over 3 years and related these to horse body condition and available food for three populations under natural conditions, and found a trend consistent with food limitation. The populations were independent, with different site characteristics and occupied areas, identified by land managers, as areas of concern about possible conservation impacts. Annual fecundity and juvenile survival varied across sites averaging between 0.21 and 0.31 female young per adult female, and 0.83 and 0.90 per annum, respectively, and annual adult survival was consistent across sites averaging 0.91 per annum. One population was increasing (λ = 1.09 year?1; 95% CI 1.04–1.14) and two populations were stable (λ ~ 1.0 year?1). Mean body condition of horses was positively correlated with mean pasture biomass rank. Across the three populations, fecundity, recruitment, body condition and annual finite population growth rate were lowest when mean pasture biomass rank was lowest and conversely highest when pasture rank was highest. We conclude that food limitation appears to be operating across these three sites. We used our results to assess the sensitivity of annual finite rate of increase (λ) to changes in key demographic parameters and found that λ was most sensitive to a change in adult survival, with the second most sensitive parameter being fecundity. Thus, if the aim of management is to reduce the size of the wild horse population then targeting adult survival is most important, followed by fecundity. Finally, we estimated the linear, negative, numerical response for wild horses between annual λ and horses per unit pasture biomass.  相似文献   

14.
Assessing the role of local populations in a landscape context has become increasingly important in the fields of conservation biology and ecology. A growing number of studies attempt to determine the source–sink status of local populations. As the source–sink concept is commonly used for management decisions in nature conservation, accurate assessment approaches are crucial. Based on a systematic literature review of studies published between 2002 and 2013, we evaluated a priori predictions on methodological and biological factors that may influence the occurrence of source or sink populations. The review yielded 90 assessments from 73 publications that included qualitative and quantitative evidence for either source or sink population(s) for one or multiple species. Overall, sink populations tended to occur more often than source populations. Moreover, the occurrence of source or sink populations differed among taxonomic classes. Sinks were more often found than sources in mammals, while there was a non‐significant trend for the opposite to be true for amphibians. Univariate and multivariate analyses showed that the occurrence of sources was positively related to connectivity of local populations. Our review furthermore highlights that more than 25 years after Pulliam's widely cited publication on ‘sources, sinks, and population regulation’, in‐depth assessments of the source–sink status of populations based on combined consideration of demographic parameters such as fecundity, survival, emigration and immigration are still scarce. To increase our understanding of source–sink systems from ecological, evolutionary and conservation‐related perspectives, we recommend that forthcoming studies on source–sink dynamics should pay more attention to the study design (i.e. connectivity of study populations) and that the assessment of the source–sink status of local populations is based on λ values calculated from demographic rates.  相似文献   

15.
Eva Banda  Guillermo Blanco 《Oikos》2009,118(7):991-1000
Nest‐site limitation may have different implications in the spatial distribution of breeding pairs depending on the availability of suitable habitat and the types of nest‐sites. Distribution of cavities suitable as nest sites may allow circumstantial aggregation or active choice of colonial nesting, which may have different implications on breeding performance through effects on breeding density, with variable costs and benefits depending on the consequences of intraspecific competition, social interactions and predation. We evaluated the effects of breeding density derived from nesting site limitation on breeding performance and predation at different spatial scales and considering multiple social, population and environmental limiting factors in the red‐billed chough Pyrrhocorax pyrrhocorax. The results indicate that variable breeding density may arise within the population depending on the availability and spatial distribution of nest‐sites. Nest‐site availability and distribution may also determine social breeding systems (isolated or aggregated) at variable densities, thus resembling differences found at different spatially distant populations under contrasting environmental conditions. Breeding performance was related to density‐dependent processes of population regulation, especially density‐dependent nest predation due to predator attraction to nest clusters. Results also indicate that predation pressure depend on density patterns at large scales. This suggest that predation may have important consequences on population dynamics of spatially structured populations depending on the strength of this kind of density dependence, which in turn may depend on habitat features affecting the prey but also the spatially variable guild of predators. Because habitat and nesting site availability may vary spatially depending on multiple human influences, understanding the strength and form in which breeding density and nest predation at different spatial scales may influence the size and persistence of populations can help to manage them more adequately.  相似文献   

16.
Changes to weather patterns under a warming climate are complex: while warmer temperatures are expected virtually worldwide, decreased mean precipitation is expected at mid-latitudes. Migratory birds depend on broad-scale weather patterns to inform timing of movements, but may be more susceptible to local weather patterns during sedentary periods. We constructed Bayesian integrated population models (IPMs) to assess whether continental or local weather effects best explained population dynamics in an environmentally sensitive aerial insectivorous bird, the tree swallow (Tachycineta bicolor), along a transcontinental gradient from British Columbia to Saskatchewan to New York, and tested whether population dynamics were synchronous among sites. Little consistency existed among sites in the demographic rates most affecting population growth rate or in correlations among rates. Juvenile apparent survival at all sites was stable over time and greatest in New York, whereas adult apparent survival was more variable among years and sites, and greatest in British Columbia and Saskatchewan. Fledging success was greatest in Saskatchewan. Local weather conditions explained significant variation in adult survival in Saskatchewan and fledging success in New York, corroborating the hypothesis that local more than continental weather drives the population dynamics of this species and, therefore, demographic synchrony measured at three sites was limited. Nonetheless, multi-population IPMs can be a powerful tool for identifying correlated population trajectories caused by synchronous demographic rates, and can pinpoint the scale at which environmental drivers are responsible for changes. We caution against applying uniform conservation actions for populations where synchrony does not occur or is not fully understood.  相似文献   

17.
Climate variation and trends affect species distribution and abundance across large spatial extents. However, most studies that predict species response to climate are implemented at small spatial scales or are based on occurrence‐environment relationships that lack mechanistic detail. Here, we develop an integrated population model (IPM) for multi‐site count and capture‐recapture data for a declining migratory songbird, Wilson's warbler (Cardellina pusilla), in three genetically distinct breeding populations in western North America. We include climate covariates of vital rates, including spring temperatures on the breeding grounds, drought on the wintering range in northwest Mexico, and wind conditions during spring migration. Spring temperatures were positively related to productivity in Sierra Nevada and Pacific Northwest genetic groups, and annual changes in productivity were important predictors of changes in growth rate in these populations. Drought condition on the wintering grounds was a strong predictor of adult survival for coastal California and Sierra Nevada populations; however, adult survival played a relatively minor role in explaining annual variation in population change. A latent parameter representing a mixture of first‐year survival and immigration was the largest contributor to variation in population change; however, this parameter was estimated imprecisely, and its importance likely reflects, in part, differences in spatio‐temporal distribution of samples between count and capture‐recapture data sets. Our modeling approach represents a novel and flexible framework for linking broad‐scale multi‐site monitoring data sets. Our results highlight both the potential of the approach for extension to additional species and systems, as well as needs for additional data and/or model development.  相似文献   

18.
Abstract Acacia suaveolens (Sm.) Willd is a perennial shrub that forms even‐aged stands, recruited from a soil seed‐bank following fire. It has previously been subject to demographic studies, which used a space‐for‐time substitution to investigate temporal patterns following fire. In the present study the potential for spatial variation across sites was investigated by sampling at several similarly aged populations in Ku‐ring‐gai Chase National Park, northern Sydney, Australia. Significant variation in mean size and fecundity of A. suaveolens individuals was observed among sites, over a 2‐4.6‐fold range in plant size, and a sevenfold range in mean fecundity. The observed variation at 3 years after fire encapsulated most of the variation previously observed among sites 0‐17 years since fire, emphasizing the importance of spatial variation in this species. For each site a two‐stage (seed, plant) matrix model was constructed, and projected from 3 to 25 years following fire. Population growth was measured as number of seeds per 3‐year‐old plant, and found to vary 1.4‐fold across models for different sites. This site‐to‐site variation, as well as that in size, fecundity and survival, was statistically significant. Variation in projected seeds per plant could mostly be attributed to differences in fecundity rather than plant survival. Sensitivity analyses emphasized the biological significance of the variation in fecundity. Whereas previous studies have focused on temporal variation, this work demonstrates the importance of extending our understanding of a species to include the spatial component of population dynamics.  相似文献   

19.
Stephen F. Matter  Jens Roland 《Oikos》2010,119(12):1961-1969
While many studies have examined factors potentially impacting the rate of local population extinction, few experimental studies have examined the consequences of extinction for spatial population dynamics. Here we report results from a large‐scale, long‐term experiment examining the effects of local population extinction for the dynamics of surrounding populations. From 2001–2008 we removed all adult butterflies from two large, neighboring populations within a system of 17 subpopulations of the Rocky Mountain Apollo butterfly, Parnassius smintheus. Surrounding populations were monitored using individual, mark–recapture methods. We found that population removal decreased immigration to surrounding populations in proportion to their connectivity to the removed populations. Correspondingly, within‐generation population abundance declined. Despite these effects, we saw little consistent impact between generations. The extinction rates of surrounding populations were unaffected and local population growth was not consistently reduced by the lack of immigration. The broader results show that immigration affects local abundance within generations, but dynamics are mediated by density‐dependence within populations and by broader density‐independent factors acting between generations. The loss of immigrants resulting from extinction has little impact on the persistence of local populations in this system.  相似文献   

20.
The spatial structure of populations determines the relative importance of reproduction, survival and movement on population dynamics. However, the mechanisms by which local individuals and immigrants interact and the subsequent effects of immigrants on productivity are poorly known. We developed an integrated population model (IPM) to study the extent and consequences of immigration on the dynamics of a neotropical migrant (American redstart, Setophaga ruticilla) over an 11-year period in Ontario, Canada. New immigrants represented the majority of the study population each year with higher immigration rates for males than females and for first-year breeders than breeders in their second year or older. Immigration was negatively density dependent, with immigrants replacing previously established breeders in a compensatory manner following their death or emigration. Because of the tradeoff between immigration and apparent survival, neither had a strong influence on population growth and reproductive output was most strongly correlated with a change in abundance between years. However, if immigration ceased, the study population would become locally extinct within 7 years and thus immigrants were essential for local population persistence. We found no evidence for reduced breeding success when immigrants represented a higher proportion of the study population. Our research highlights the importance of movement in the stability of open populations and the strong correlation between the fates of local breeders and the number of immigrants entering the population. We recommend the use of IPMs to address the spatial scale over which immigration occurs and how different scales influence its contribution to population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号