首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Cerebral glutamate was monitored in a superfused cerebral cortical preparation by 1H NMR spectroscopy using a semiselective spin-echo sequence N -acetyl aspartate (NAA) as an internal concentration reference. During controlled metabolic conditions, the cerebral 1H NMR-detected glutamate-to-NAA ratio was ∼ 20–30% lower than expected from the ratio of neutralized perchloric acid extracts of the preparations. Inhibition of respiration in the presence of glucose did not change the 1H NMR glutamate-to-NAA ratio in brain slice preparation. In contrast, either complete depletion of ATP during cyanide poisoning together with 0 m M glucose, anoxia in the absence of glucose, or treatment with nigericin or with a protonophore, carbonyl cyanide- m -fluorophenylhydrazone, increased 1H NMR-detected glutamate/NAA in the cerebral preparations without a change in the relative and absolute concentration ratios determined from the tissue acid extracts. Spin-spin relaxation times of glutamate and NAA peaks in anoxic slices were 749 ± 89 and 729 ± 94 ms, respectively, and thus, the portion of glutamate that could not be detected by 1H NMR was quantified in absolute terms. It was calculated that an increase in the glutamate-to-NAA ratio from 0.55 ± 0.02 to 0.67 ± 0.02 during aglycemic anoxia corresponded to some 6 mmol/kg of tissue dry weight of glutamate from the total concentration of 28 mmol/kg dry weight. It is suggested that this 22% of total glutamate pool is present in a noncytoplasmic compartment during controlled metabolic state.  相似文献   

2.
The compartmentation of amino acid metabolism is an active and important area of brain research. 13C labeling and 13C nuclear magnetic resonance (NMR) are powerful tools for studying metabolic pathways, because information about the metabolic histories of metabolites can be determined from the appearance and position of the label in products. We have used 13C labeling and 13C NMR in order to investigate the metabolic history of gamma-aminobutyric acid (GABA) and glutamate in rat brain. [1-13C]Glucose was infused into anesthetized rats and the 13C labeling patterns in GABA and glutamate examined in brain tissue extracts obtained at various times after infusion of the label. Five minutes after infusion, most of the 13C label in glutamate appeared at the C4 position; at later times, label was also present at C2 and C3. This 13C labeling pattern occurs when [1-13C]glucose is metabolized to pyruvate by glycolysis and enters the pool of tricarboxylic acid (TCA) intermediates via pyruvate dehydrogenase. The label exchanges into glutamate from the TCA cycle pool through glutamate transaminases or dehydrogenase. After 30 min of infusion, approximately 10% of the total 13C in brain extracts appeared in GABA, primarily (greater than 80%) at the amino carbon (C4), indicating that the GABA detected is labeled through pyruvate carboxylase. The different labeling patterns observed for glutamate and GABA show that the large detectable glutamate pool does not serve as the precursor to GABA. Our NMR data support previous experiments suggesting compartmentation of metabolism in brain, and further demonstrate that GABA is formed from a pool of TCA cycle intermediates derived from an anaplerotic pathway involving pyruvate carboxylase.  相似文献   

3.
Nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of cells from the central nervous system both in vitro on perchloric acid extracts obtained either from cultured tumoral cells (C6 rat glioma) or rat astrocytes in primary culture, and in vivo within the human brain. Analysis of carbon 13 NMR spectra of perchloric acid extracts prepared from cultured cells in the presence of NMR [1-13C] glucose as substrate allowed determination of the glutamate and glutamine enrichments in both normal and tumoral cells. Preliminary results indicated large changes in the metabolism of these amino acids (and also of aspartate and alanine) in the C6 cell as compared to its normal counterpart. Localized proton NMR spectra of the human brain in vivo were obtained at 1.5 T, in order to evaluate the content of various metabolites, including glutamate, in peritumoral edema from a selected volume of 2 x 2 x 2 cm3. N-acetyl aspartate, glutamate, phosphocreatine, creatine, choline and inositol derivative resonances were observed in 15 min spectra. N-acetyl-aspartate was found to be at a lower level in contrast to glutamate which was detected at a higher level in the injured area as compared to the contralateral unaffected side.  相似文献   

4.
Metabolic alterations in amino acids, high-energy phosphates, and intracellular pH during and after insulin hypoglycemia in the rat brain was studied in vivo by 1H and 31P nuclear magnetic resonance (NMR) spectroscopy. Sequential accumulations of 1H and 31P spectra were obtained from a double-tuned surface coil positioned over the exposed skull of a rat while the electroencephalogram was recorded continuously. The transition to EEG silence was accompanied by rapid declines in phosphocreatine, nucleoside triphosphate, and an increase in inorganic orthophosphate in 31P spectra. In 1H spectra acquired during the same time interval, the resonances of glutamate and glutamine decreased in intensity while a progressive increase in aspartate was observed. Following glucose administration, glutamate and aspartate returned to control levels (recovery half-time, 8 min); recovery of glutamine was incomplete. An increase in lactate was detected in the 1H spectrum during recovery but it was not associated with any change in the intracellular pH as assessed in the corresponding 31P spectrum. Phosphocreatine returned to control levels following glucose administration, in contrast to nucleoside triphosphate and inorganic orthophosphate which recovered to only 80% and 200% of their control levels, respectively. These results show that the changes in cerebral amino acids and high-energy phosphates detected by alternating the collection of 1H and 31P spectra allow for a detailed assessment of the metabolic response of the hypoglycemic brain in vivo.  相似文献   

5.
Acute liver failure was induced in rats by a single intragastric dose of carbon tetrachloride. This causes hepatic centrilobular necrosis, as indicated by histological examinations, and produces a large increase in the activity of serum alanine aminotransferase. The plasma NH4+ level (mean +/- SEM) was 123 +/- 10 microM in the control group and 564 +/- 41 microM in animals with acute liver failure (each n = 5). 31P nuclear magnetic resonance (NMR) was used to monitor brain cortical high-energy phosphate compounds, Pi, and intracellular pH. 1H NMR spectroscopy was utilised to detect additional metabolites, including glutamate, glutamine, and lactate. The results show that the forebrain is capable of maintaining normal phosphorus energy metabolite ratios and intracellular pH despite the metabolic challenge by an elevated blood NH4+ level. There was a significant increase in the brain glutamine level and a concomitant decrease in the glutamate level during hyperammonaemia. The brain lactate level increased twofold in rats with acute liver failure. The results indicate that 1H NMR can be used to detect cerebral metabolic changes in this model of hyperammonaemia, and our observations are discussed in relation to compartmentation of NH4+ metabolism.  相似文献   

6.
Proton magnetic resonance spectroscopy of leech muscle and nervous system   总被引:1,自引:0,他引:1  
1. Proton nuclear magnetic resonance spectroscopy (1H NMR) was used to measure the major intracellular metabolites in perchloric acid extracts of the Macrobdella decora muscle and nervous systems and the Oryctolagus cuniculus cerebrum. 2. Acetate, alanine, choline, glutamate, inositol, and lactate were assigned in the spectrum of leech ventral cord, leech muscle, and rabbit cerebrum. 3. Hirudonine and propionate were clearly observed only in the spectrum of leech muscle. 4. Creatine, N-acetyl aspartate, gamma aminobutyric acid, aspartate, and taurine, distinctive components of spectra of the mammalian cerebrum, were not seen in the invertebrate spectra. 5. 1H NMR spectroscopy provides a simple and rapid means of characterizing the major organic metabolites found in leech muscle and nervous tissues.  相似文献   

7.
Abstract: The effect of anoxia and ischemia on the release of amino acid transmitters from cerebellar slices induced by veratridine or high [K+] was studied. Synaptic specificity was tested by examining the tetradotoxin (TTX)-sensitive and the Ca2+-dependent components of stimulated release. Evoked release of endogenous amino acids was investigated in addition to more detailed studies on the stimulated efflux of preloaded [14C]GABA and d -[3H]aspartate (a metabolically more stable anologue of acidic amino acids).[14C]GABA release evoked by either method of stimulation was unaffected by periods of up to 35 min of anoxia and declined moderately by 45 min. In contrast, induced release of d -[3H]Asp increased markedly during anoxia to a peak at about 25 min, followed by a decline when anoxia was prolonged to 45 min. Evidence was obtained that the increased evoked efflux of d -[3H]Asp from anoxic slices was not due to impaired reuptake of the released amino acid and that it was completely reversible by reoxygenation of the slices. Results of experiments examining the evoked release of endogenous amino acids in anoxia were consistent with those obtained with the exogenous amino acids. Only 4 of the 10 endogenous amino acids studied exhibited TTX-sensitive veratridine-induced release under aerobic conditions (glutamate, aspartate, GABA, and glycine). Anoxia for 25 min did not affect the stimulated efflux of these amino acids with the exception of glutamate, which showed a significant increase. Compared with anoxia, effects of ischemia on synaptic function appeared to be more severe. Veratridine-evoked release of [14C]GABA was already depressed by 10 min and that of d -[3H]Asp showed a modest elevation only at 5 min. Stimulated release of d -Asp and labelled GABA declined progressively after 5 min. These findings were compared with changes in tissue ATP concentrations and histology. The latter studies indicated that in anoxia the earliest alterations are detectable in glia and that nerve terminals were the structures by far the most resistant to anoxic damage. The results thus indicated that evoked release of amino acid transmitters in the cerebellum is compromised only by prolonged anoxia in vitro. In addition, it would appear that the stimulated release of glutamate is selectively accentuated during anoxia. This effect may have a bearing on some hypoxic behavioral changes and, perhaps, also on the well-known selective vulnerability of certain neurons during hypoxia.  相似文献   

8.
In this study data generated by 1H NMR were combined with chemometrics to analyse brain and plasma samples from APP/PS1 and wild type mice with the aim of developing a statistical model capable of predicting the features of Alzheimer’s disease (AD) displayed by this animal model. APP/PS1 is a well characterised double transgenic mouse model of AD and the results here demonstrate the potential of NMR technology as a platform for the detecting this disease. Using partial least squares discriminant analysis a model was built using both brain extracts (R2 = 0.99; Q2 = 0.66) and a high throughput method of plasma analysis (R2 = 0.98; Q2 = 0.75) capable of predicting AD in APP/PS1 mice. Analysis of brain extracts led to the elucidation of 20 metabolites and 16 of these were quantifiable. Relative brain levels of ascorbate, creatine, γ-aminobutyric acid and N-acetyl aspartic acid were significantly altered in APP/PS1 mice (p < 0.05). Analysis of plasma identified 14 metabolites and the levels of acetate, citrate, glutamate, glutamine, methionine, and an unknown signal were significantly altered in APP/PS1 mice (p < 0.05). Combining 1H NMR spectral data with chemometrics has been previously used to study biochemical disturbances in various disease states. This study further indicates the translational potential of this technology for identifying AD in people attending the memory clinic.  相似文献   

9.
The crucian carp (Carassius carassius) can tolerate anoxia for days to months, depending on the temperature. In this study, we applied 1H-NMR-based metabolomics to polar extracts of crucian carp brain, heart, muscle and liver samples obtained from fish exposed to either control normoxic conditions, acute anoxia (24 h), chronic anoxia (1 week) or reoxygenation (for 1 week following chronic anoxia) at 5 °C. Spectra of the examined tissues revealed changes in several energy-related compounds. In particular, anoxic stress resulted in decreased concentrations of phosphocreatine (muscle, liver) and glycogen (liver) and ATP/ADP (liver, heart and muscle) and increased concentrations of lactate (brain, heart, muscle) and beta-hydroxybutyric acid (all tissues). Likewise, increased concentrations of inhibitory compounds (glycine, gamma-amino butyric acid or GABA) and decreased concentrations of excitatory metabolites (glutamate, glutamine) were confirmed in the anoxic brain extracts. Additionally, a decrease of N-acetylaspartate (NAA), an important neuronal marker, was also observed in anoxic brains. The branched-chain amino acids (BCAA) valine/isoleucine/leucine increased in all anoxic tissues. Possibly, this general tissue increase can be due to an inhibited mitochondrial function or due to protein degradation/protein synthesis inhibition. In this study, the potential and strength of the 1H-NMR is highlighted by the detection of previously unrecognized changes in metabolites. Specifically, myo-inositol substantially decreased in the heart of anoxic crucian carp and anoxic muscle tissue displayed a decreased concentration of taurine, providing novel insights into the anoxia responses of the crucian carp.  相似文献   

10.
Whole cell extracts ofArabidopsis cell cultures maintained on various sucrose concentrations (0,3, and 6%) were analyzed by1H NMR spectroscopy to determine the comprehensive metabolic change in these cultures during sucrose starvation. The amount of sucrose, glucose, and fructose in the cells decreased to almost nothing after 12 h of culture in medium without sucrose. In contrast, the total free amino acid content of the cells increased as the culture proceeded. Among the free amino acids, phenylalanine and malic acid increased the most, followed by asparagine and alanine, whereas glutamic acid did not change significantly. These results are in agreement with previous studies using HPLC.1H NMR spectroscopy enabled measurement of changes in the sugar and free amino acid content of whole cell extracts without fractionation and complicated sample preparation. These results indicate that comprehensive metabolic changes in the cells can be determined by a simple, rapid method using whole cell extracts and1H NMR spectroscopy.  相似文献   

11.
Summary Sea mussels were exposed to nitrogen for various periods (0, 1, 3 and 6 days) and subsequently injected with 2,3-14C-succinic acid. After 2.5 h anaerobic incubation concentrations of succinate, some amino acids and volatile fatty acids were determined as well as the distribution of radioactivity.Conversion of the precursor decreased from 80 to 40%, due to increased dilution with endogenous succinate, accumulated during the anaerobic preincubation period.More than 80% of the activity of the converted 2,3-14C-succinic acid was incorporated into malate, aspartate, glutamate, alanine and propionate. This indicates that succinate is not only an end product of anaerobic glycogen breakdown, but remains an active intermediate of the tricarboxylic acid cycle, which can still operate under anaerobic conditions.Concentration and radioactivity of propionate were markedly increased after prolonged anoxia, which gives evidence that succinate is actively converted to propionate during anaerobiosis.Observed accumulation of glutamate during anoxia is explained by incomplete oxidation of pyruvate, which leaves the tricarboxylic acid cycle at the stage of 2-ketoglutarate.  相似文献   

12.
A hallmark of anoxia tolerance in western painted turtles is relative constancy of tissue adenylate concentrations during periods of oxygen limitation. During anoxia heart and brain intracellular compartments become more acidic and cellular energy demands are met by anaerobic glycolysis. Because changes in adenylates and pH during anoxic stress could represent important signals triggering metabolic and ion channel down-regulation we measured PCr, ATP and intracellular pH in turtle brain sheets throughout a 3-h anoxic-re-oxygenation transition with 31P NMR. Within 30 min of anoxia, PCr levels decrease 40% and remain at this level during anoxia. A different profile is observed for ATP, with a statistically significant decrease of 23% occurring gradually during 110 min of anoxic perfusion. Intracellular pH decreases significantly with the onset of anoxia, from 7.2 to 6.6 within 50 min. Upon re-oxygenation PCr, ATP and intracellular pH recover to pre-anoxic levels within 60 min. This is the first demonstration of a sustained reversible decrease in ATP levels with anoxia in turtle brain. The observed changes in pH and adenylates, and a probable concomitant increase in adenosine, may represent important metabolic signals during anoxia.  相似文献   

13.
Ex vivo ?(13)C, (2)H? NMR spectroscopy allowed to estimate the relative sizes of neuronal and glial glutamate pools and the relative contributions of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate to the neuronal and glial tricarboxylic acid cycles of the adult rat brain. Rats were infused during 60 min in the right jugular vein with solutions containing (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose or (2-(13)C, 2-(2)H(3)) acetate only. At the end of the infusion the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by high resolution (13)C NMR spectroscopy (90.5 MHz). The relative sizes of the neuronal and glial glutamate pools and the contributions of acetyl-CoA molecules derived from (2-(13)C, (2)H(3)) acetate or (1-(13)C) glucose entering the tricarboxylic acid cycles of both compartments, could be determined by the analysis of (2)H-(13)C multiplets and (2)H induced isotopic shifts observed in the C4 carbon resonances of glutamate and glutamine. During the infusions with (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose, the glial glutamate pool contributed 9% of total cerebral glutamate being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (4%), (2-(13)C) acetyl-CoA (3%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (2%). The neuronal glutamate pool accounted for 91% of the total cerebral glutamate being mainly originated from (2-(13)C) acetyl-CoA (86%) and (2-(13)C, 2-(2)H) acetyl-CoA (5%). During the infusions of (2-(13)C, 2-(2)H(3)) acetate only, the glial glutamate pool contributed 73% of the cerebral glutamate, being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (36%), (2-(13)C, 2-(2)H) acetyl-CoA (27%) and (2-(13)C) acetyl-CoA (10%). The neuronal pool contributed 27% of cerebral glutamate being formed from (2-(13)C) acetyl-CoA (11%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (16%). These results illustrate the potential of ?(13)C, (2)H? NMR spectroscopy as a novel approach to investigate substrate selection and metabolic compartmentation in the adult mammalian brain.  相似文献   

14.
1H NMR detection of cerebral myo-inositol   总被引:1,自引:0,他引:1  
A previously unassigned group of prominent multiplets of the 360 MHz 1H NMR spectrum of acid stable metabolite extracts from rat brain is shown to arise from free myo-inositol. This conclusion is derived from a systematic analysis of the high-resolution 1H NMR spectra of brain acid extracts, in which appropriate conditions and optimal proton signals have been selected for the quantitative analysis of up to 15 metabolites. Developmental variations in the cerebral content of myo-inositol could be readily detected using this approach, which provides a novel alternative to study myo-inositol metabolism under physiological or pathological conditions.  相似文献   

15.
The effect of the presence of ammonia on [1-13C]glucose metabolism in the rumen fibrolytic bacterium Fibrobacter succinogenes S85 was studied by 13C and 1H nuclear magnetic resonance (NMR). Ammonia halved the level of glycogen storage and increased the rate of glucose conversion into acetate and succinate 2.2-fold and 1.4-fold, respectively, reducing the succinate-to-acetate ratio. The 13C enrichment of succinate and acetate was precisely quantified by 13C-filtered spin-echo difference 1H-NMR spectroscopy. The presence of ammonia did not modify the 13C enrichment of succinate C-2 (without ammonia, 20.8%, and with ammonia, 21.6%), indicating that the isotopic dilution of metabolites due to utilization of endogenous glycogen was not affected. In contrast, the presence of ammonia markedly decreased the 13C enrichment of acetate C-2 (from 40 to 31%), reflecting enhanced reversal of the succinate synthesis pathway. The reversal of glycolysis was unaffected by the presence of ammonia as shown by 13C-NMR analysis. Study of cell extracts showed that the main pathways of ammonia assimilation in F. succinogenes were glutamate dehydrogenase and alanine dehydrogenase. Glutamine synthetase activity was not detected. Glutamate dehydrogenase was active with both NAD and NADP as cofactors and was not repressed under ammonia limitation in the culture. Glutamate-pyruvate and glutamate-oxaloacetate transaminase activities were evidenced by spectrophotometry and 1H NMR. When cells were incubated in vivo with [1-13C]glucose, only 13C-labeled aspartate, glutamate, alanine, and valine were detected. Their labelings were consistent with the proposed amino acid synthesis pathway and with the reversal of the succinate synthesis pathway.  相似文献   

16.
[1-(13) C]glucose metabolism in the rat brain was investigated after intravenous infusion of the labelled substrate. Incorporation of the label into metabolites was analysed by NMR spectroscopy as a function of the infusion time: 10, 20, 30 or 60 min. Specific enrichments in purified mono- and dicarboxylic amino acids were determined from (1) H-observed/(13) C-edited and (13) C-NMR spectroscopy. The relative contribution of pyruvate carboxylase versus pyruvate dehydrogenase (PC/PDH) to amino acid labelling was evaluated from the enrichment difference between either C2 and C3 for Glu and Gln, or C4 and C3 for GABA, respectively. No contribution of pyruvate carboxylase to aspartate, glutamate or GABA labelling was evidenced. The pyruvate carboxylase contribution to glutamine labelling varied with time. PC/PDH decreased from around 80% after 10 min to less than 30% between 20 and 60 min. This was interpreted as reflecting different labelling kinetics of the two glutamine precursor glutamate pools: the astrocytic glutamate and the neuronal glutamate taken up by astrocytes through the glutamate-glutamine cycle. The results are discussed in the light of the possible occurrence of neuronal pyruvate carboxylation. The methods previously used to determine PC/PDH in brain were re-evaluated as regards their capacity to discriminate between astrocytic (via pyruvate carboxylase) and neuronal (via malic enzyme) pyruvate carboxylation.  相似文献   

17.
The brain of a human neonate is more vulnerable to hypoglycemia than that of pediatric and adult patients. Repetitive and profound hypoglycemia during the neonatal period (RPHN) causes brain damage and leads to severe neurologic sequelae. Ex vivo high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy was carried out in the present study to detect metabolite alterations in newborn and adolescent rats and investigate the effects of RPHN on their occipital cortex and hippocampus. Results showed that RPHN induces significant changes in a number of cerebral metabolites, and such changes are region-specific. Among the 16 metabolites detected by ex vivo 1H NMR, RPHN significantly increased the levels of creatine, glutamate, glutamine, γ-aminobutyric acid, and aspartate, as well as other metabolites, including succine, taurine, and myo-inositol, in the occipital cortex of neonatal rats compared with the control. By contrast, changes in these neurochemicals were not significant in the hippocampus of neonatal rats. When the rats had developed into adolescence, the changes above were maintained and the levels of other metabolites, including lactate, N-acetyl aspartate, alanine, choline, glycine, acetate, and ascorbate, increased in the occipital cortex. By contrast, most of these metabolites were reduced in the hippocampus. These metabolic changes suggest that complementary mechanisms exist between these two brain areas. RPHN appears to affect occipital cortex and hippocampal activities, neurotransmitter transition, energy metabolism, and other metabolic equilibria in newborn rats; these effects are further aggravated when the newborn rats develop into adolescence. Changes in the metabolism of neurotransmitter system may be an adaptive measure of the central nervous system in response to RPHN.  相似文献   

18.
Acute hyperammonemia was induced by 15NH4+ infusion in portacaval-shunted (PCS) and control rats to investigate its effects on cerebral metabolism of glutamine, glutamate and gamma-aminobutyrate. Cerebral 15N-metabolites were observed by 15N-NMR spectroscopy in the ex vivo brain, removed in toto at the end of infusion. Key 15N-metabolites in the brain and liver were quantitated and their specific activities measured by NMR and biochemical assays in perchloric acid extracts of the freeze-clamped organs. In the ex vivo brain, [gamma-15N]glutamine, present at tissue concentrations of 3-5 mumol/g with 15N enrichment of 36-48%, was observable within 6-13 min of data acquisition. [alpha-15N]glutamine/glutamate, each present at 0.5-1 mumol/g (approx. 10% enrichment), were observed in 27 min. The results demonstrate the feasibility of observing these cerebral metabolites by 15N-NMR within a physiological time scale. In a rat pretreated with glutamine synthetase inhibitor, L-methionine DL-sulfoximine, cerebral [15N]gamma-aminobutyrate was observed after 910 min. In PCS rats, decreased 15NH4+ removal in the liver was accompanied by formation of approx. 2-fold higher concentration of cerebral [gamma-15N]glutamine relative to that in weight-matched controls. The result suggests that increased diffusion of blood-borne 15NH3 into the brain led to increased [gamma-15N]glutamine synthesis in astrocytes as well as ammonia-mediated inhibition of glutaminase.  相似文献   

19.
Selected tissues (skeletal muscle, heart ventrical, and liver), sampled from turtles (Chrysemys picta bellii) at 3°C either under normoxic conditions or after 12 weeks of anoxic submergence were quantiaatively analysed for intracellular pH and phosphorus metabolites using 31P-NMR. Plasma was tested for osmolality and for the concentrations of lactate, calcium, and magnesium to confirm anoxic stress. We hypothesized that, in the anoxic animals, tissue ATP levels would be maintained and that the increased osmolality of the body fluids of anoxic turtles would be accounted for by a corresponding increase in the concentrations of phosphodiesters. The responses observed differed among the three tissues. In muscle, ATP was unchanged by anoxia but phosphocreatine was reduced by 80%; in heart, both ATP and phosphocreatine fell by 35–40%. The reduction in phosphocreatine in heart tissue at 3°C was similar to that observed in isolated, perfused working hearts from turtles maintained at 20°C but no decrease in ATP occurred in the latter tissues. In liver, although analyses of several specimens were confounded by line-broadening, neither ATP nor phosphocreatine was detectable in anoxic samples. Phosphosdiesters were detected in amounts sufficient to account for 30% of normoxic cell osmotic concentration in heart and 11% and 12% in liver and muscle, respectively. The phosphodiester levels did not change in anoxia. Heart ventricular phosphodiester levels in turtles at 3°C were significantly higher than those determined for whole hearts from turtles at 20°C. 1H, 13C and 31P NMR analyses of perchloric acid extracts of heart and skeletal muscle from 20°C turtles con firmed that the major phosphodiester observed by NMR in these tissues is serine ethanolamine phosphate. We conclude that the three types of tissues studied differ substantially in their ability to maintain levels of ATP during anoxia, and that liver may continue to function despite NMR-undetectable levels of this metabolite. In addition, we conclude that phosphodiesters do not serve as regulated osmolytes during anoxia, and that the functional significance of their high concentrations in turtle tissues remains uncertain.  相似文献   

20.
The effects of palmitate on intracellular and extracellular amino acid concentrations of cultured astrocytes was studied. Exposure of astrocytes to either 0.72 mM or 0.36 mM palmitate was associated with a significant reduction in the intracellular pool of glutamine and taurine. In contrast, the intracellular concentration of histidine, glycine, citrulline, isoleucine and leucine were increased in the presence of 0.72 mM palmitate. Comparable changes in the extracellular amino acid pool were not observed. The data suggest that palmitic acid, which accumulates in the brain during periods of anoxia, alters the metabolism of several amino acids in cultured astrocytes. These changes may be of significance in terms of the pathophysiology of a stress such as anoxia.Special issue dedicated to Dr. Elling Kvamme  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号