首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance. In the present paper, we review recent findings on the histone chaperone interactions that guide the assembly of histones H3 and H4 into chromatin. This evidence supports the concepts of histone post-translational modifications and specific histone chaperone interactions as guiding principles for histone H3/H4 transactions during chromatin assembly.  相似文献   

2.
3.
Numerous studies have recently addressed the accessibility of nucleosomal DNA to protein factors. Two popular concepts - the histone code and chromatin remodeling - consider the nucleosome as a passive entity that 'waits' to be marked by histone modifications and is 'mobilized' by ATP-dependent remodelers. Here, we propose a holistic view of the nucleosome as an active, dynamic entity, the accessibility of which is controlled by binding of different linker proteins to the DNA entry/exit site. The linker proteins might directly compete for this binding site; alternatively, protein chaperones and/or chromatin remodelers might exchange one linker protein for another. Finally, according to our proposed model, the exchange factors are themselves controlled by post-translational modifications or binding of protein partners, to respond to the ever-changing intra- and extra-cellular environment.  相似文献   

4.

Background

Differential accessibility of DNA to nuclear proteins underlies the regulation of numerous cellular processes. Although DNA accessibility is primarily determined by the presence or absence of nucleosomes, differences in nucleosome composition or dynamics may also regulate accessibility. Methods for mapping nucleosome positions and occupancies genome-wide (MNase-seq) have uncovered the nucleosome landscapes of many different cell types and organisms. Conversely, methods specialized for the detection of large nucleosome-free regions of chromatin (DNase-seq, FAIRE-seq) have uncovered numerous gene regulatory elements. However, these methods are less successful in measuring the accessibility of DNA sequences within nucelosome arrays.

Results

Here we probe the genome-wide accessibility of multiple cell types in an unbiased manner using restriction endonuclease digestion of chromatin coupled to deep sequencing (RED-seq). Using this method, we identified differences in chromatin accessibility between populations of cells, not only in nucleosome-depleted regions of the genome (e.g., enhancers and promoters), but also within the majority of the genome that is packaged into nucleosome arrays. Furthermore, we identified both large differences in chromatin accessibility in distinct cell lineages and subtle but significant changes during differentiation of mouse embryonic stem cells (ESCs). Most significantly, using RED-seq, we identified differences in accessibility among nucleosomes harboring well-studied histone variants, and show that these differences depend on factors required for their deposition.

Conclusions

Using an unbiased method to probe chromatin accessibility genome-wide, we uncover unique features of chromatin structure that are not observed using more widely-utilized methods. We demonstrate that different types of nucleosomes within mammalian cells exhibit different degrees of accessibility. These findings provide significant insight into the regulation of DNA accessibility.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1104) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
G L?ngst  E J Bonte  D F Corona  P B Becker 《Cell》1999,97(7):843-852
The chromatin accessibility complex (CHRAC) belongs to the class of nucleosome remodeling factors that increase the accessibility of nucleosomal DNA in an ATP-dependent manner. We found that CHRAC induces movements of intact histone octamers to neighboring DNA segments without facilitating their displacement to competing DNA or histone chaperones in trans. CHRAC-induced energy-dependent nucleosome sliding may, in principle, explain nucleosome remodeling, nucleosome positioning, and nucleosome spacing reactions known to be catalyzed by CHRAC. The catalytic core of CHRAC, the ATPase ISWI, also mobilized nucleosomes at the expense of energy. However, the directionality of the CHRAC- and ISWI-induced nucleosome movements differed drastically, indicating that the geometry of the native complex modulates the activity of its catalytic core.  相似文献   

17.
18.
Packaging of the DNA in nucleosomes restricts its accessibility to regulatory factors and enzymatic complexes, making a local remodeling of the nucleosome structure a prerequisite to the establishment of protein-DNA interactions. The use of an experimental system in which one nucleosome is reconstituted on a short linear DNA fragment allows gel fractionation of nucleosomes according to their translational positions, whose locations are dependent on the underlying DNA sequence. Nucleosome mobilization by chromatin remodeling factors is easily detected by observing band disappearance in gel, which in turn provides evidence for histone octamer displacement. Here, we provide methods for chromatin assembly that we have been using in our analysis for nucleosome mobilization by chromatin remodeling factors. These methods are straightforward and easy to follow. Thus, they may provide a good starting assay system for analysis of nucleosome movements by other chromatin remodeling machines.  相似文献   

19.
DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mechanism allowing access of protein complexes to nucleosomal DNA. However, existing quantitative analyses of site exposure focused on single nucleosomes, while the presence of neighbor nucleosomes and concomitant chromatin folding might significantly influence site exposure. In this work, we carried out quantitative studies on the accessibility of nucleosomal DNA in homogeneous nucleosome arrays. Two striking findings emerged. Organization into chromatin fibers changes the accessibility of nucleosomal DNA only modestly, from ∼ 3-fold decreases to ∼ 8-fold increases in accessibility. This means that nucleosome arrays are intrinsically dynamic and accessible even when they are visibly condensed. In contrast, chromatin folding decreases the accessibility of linker DNA by as much as ∼ 50-fold. Thus, nucleosome positioning dramatically influences the accessibility of target sites located inside nucleosomes, while chromatin folding dramatically regulates access to target sites in linker DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号