首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 2a (polymerase) protein of cucumber mosaic virus (CMV) was shown to be phosphorylated both in vivo and in vitro. In vitro assays using 2a protein mutants and tobacco protein kinases showed that the 2a protein has at least three phosphorylation sites, one of which is located within the N-terminal 126 amino acid region. This region is essential and sufficient for interaction with the CMV 1a protein. When phosphorylated in vitro, the 2a protein N-terminal region failed to interact with the 1a protein. Since the 1a-2a interaction is essential for the replication of CMV, this suggests that phosphorylation of the N-terminal region of the 2a protein negatively modulates the interaction in vivo, and may have a regulatory role acting directly in viral infection.  相似文献   

3.
All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ~50% smaller but ~4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly.  相似文献   

4.
De novo DNA synthesis on poly(dT) by a novel mouse DNA polymerase, here named "DNA replicase," was examined for the synthesis of RNA which functions as a primer in the subsequent synthesis of DNA. As has been reported previously (Yagura, T., Kozu, T., and Seno, T. (1982) J. Biochem. (Tokyo) 91, 607-618), a novel RNA polymerase activity, which is distinguished from those of classical RNA polymerases, is associated with DNA replicase. The synthesis of RNA and DNA by DNA replicase (Mr = 16 X 10(4), by glycerol gradient sedimentation analysis) was greatly stimulated by a specific stimulating factor (Mr = 13 X 10(4), by glycerol gradient sedimentation analysis) which was found to consist of two subunits (Mr = 63 X 10(3), by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Nearest neighbor analysis in which transfer of 32P from alpha-labeled nucleoside triphosphates to ribo- and deoxyribonucleotides was examined, showed th at RNA of 8-10 nucleotides long was covalently linked to the 5'-end of the DNA product molecule. This RNA, named initiator RNA, had a triphosphate group at its 5' terminus and its size and synthesis were little affected by the addition of high concentrations of deoxynucleoside triphosphate, while in these conditions deoxyribonucleotides were incorporated into initiator RNA to a limited extent. The characteristics of the DNA replicase and stimulating factor that cooperate to synthesize initiator RNA for subsequent DNA synthesis on single-stranded DNA are important because these components seem to be involved in a reaction required to initiate the synthesis of discontinuous earliest DNA intermediates (Okazaki fragments) in chromosomal DNA replication of eukaryotic cells.  相似文献   

5.
Frog virus 3 requires RNA polymerase II for its replication.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

6.
Positive-strand RNA virus genome replication occurs in membrane-associated RNA replication complexes, whose assembly remains poorly understood. Here we show that prior to RNA replication, the multifunctional, transmembrane RNA replication protein A of the nodavirus flock house virus (FHV) recruits FHV genomic RNA1 to a membrane-associated state in both Drosophila melanogaster and Saccharomyces cerevisiae cells. Protein A has mitochondrial membrane-targeting, self-interaction, RNA-dependent RNA polymerase (RdRp), and RNA capping domains. In the absence of RdRp activity due to an active site mutation (A(D692E)), protein A stimulated RNA1 accumulation by increasing RNA1 stability. Protein A(D692E) stimulated RNA1 accumulation in wild-type cells and in xrn1(-) yeast defective in decapped RNA decay, showing that increased RNA1 stability was not due to protein A-mediated RNA1 recapping. Increased RNA1 stability was closely linked with protein A-induced membrane association of the stabilized RNA and was highly selective for RNA1. Substantial N- and C-proximal regions of protein A were dispensable for these activities. However, increased RNA1 accumulation was eliminated by deleting protein A amino acids (aa) 1 to 370 but was restored completely by adding back the transmembrane domain (aa 1 to 35) and partially by adding back peripheral membrane association sequences in aa 36 to 370. Moreover, although RNA polymerase activity was not required, even small deletions in or around the RdRp domain abolished increased RNA1 accumulation. These and other results show that prior to negative-strand RNA synthesis, multiple domains of mitochondrially targeted protein A cooperate to selectively recruit FHV genomic RNA to membranes where RNA replication complexes form.  相似文献   

7.
8.
9.
10.
11.
T Fahima  Y Wu  L Zhang    N K Van Alfen 《Journal of virology》1994,68(9):6116-6119
Hypovirulence of the pathogenic fungus Cryphonectria parasitica, caused by the unencapsidated viral double-stranded RNA of Cryphonectria hypovirus (CHV1), provides a means for biological control of chestnut blight. We report here the isolation of a replication complex of the virus solubilized from host membranes. The conserved regions of the putative RNA polymerase encoded by strain CHV1-713 were cloned and expressed, and the recombinant protein was purified and used to produce polyclonal antibodies. The CHV1 replication complex was solubilized from a membrane fraction of CHV1-infected C. parasitica hyphae. Antibodies raised against the putative viral polymerase reacted on a Western immunoblot with an 87-kDa polypeptide of the replication complex but not with comparable preparations from an isogenic uninfected strain. Analysis of the polypeptide composition of the complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining revealed a number of other polypeptides along with the double-stranded RNA of the virus. We conclude that this 87-kDa polypeptide is the putative RNA polymerase encoded on open reading frame B of CHV1.  相似文献   

12.
5-Bromo-UTP was found to replace UTP efficiently as a substrate for the virion-associated double-stranded RNA replicase of Penicilliumstoloniferum virus PsV-S. The double-stranded RNA product of the replication reaction with 5-bromo-UTP as a substrate gave in equilibrium caesium sulphate density gradient centrifugation a single band with a buoyant density of 1.647 g/ml, consistent with that of a hybrid double-stranded RNA consisting of one brominated and one unbrominated strand. After the reaction none of the original unbrominated double-stranded RNA (buoyant density 1.606 g/ml) could be detected. It is concluded that replication of double-stranded RNA in virions of PsV-S takes place by a semi-conservative mechanism.  相似文献   

13.
We report that protein 2C, the putative nucleoside triphosphatase/helicase protein of poliovirus, is required for the initiation of negative-strand RNA synthesis. Preinitiation RNA replication complexes formed upon the translation of poliovirion RNA in HeLa S10 extracts containing 2 mM guanidine HCI, a reversible inhibitor of viral protein 2C. Upon incubation in reactions lacking guanidine, preinitiation RNA replication complexes synchronously initiated and elongated negative-strand RNA molecules, followed by the synchronous initiation and elongation of positive-strand RNA molecules. The immediate and exclusive synthesis of negative-strand RNA upon the removal of guanidine demonstrates that guanidine specifically blocks the initiation of negative-strand RNA synthesis. Readdition of guanidine HCl to reactions synchronously elongating nascent negative-strand RNA molecules did not prevent their continued elongation and completion. In fact, readdition of guanidine HCl to reactions containing preinitiation complexes elongating nascent negative-strand RNA molecules had no effect on subsequent positive-strand RNA synthesis initiation or elongation. Thus, the guanidine-inhibited function of viral protein 2C was not required for the elongation of negative-strand RNA molecules, the initiation of positive-strand RNA molecules, or the elongation of positive-strand RNA molecules. The guanidine-inhibited function of viral protein 2C is required only immediately before or during the initiation of negative-strand RNA synthesis. We suggest that guanidine may block an irreversible structural maturation of protein 2C and/or RNA replication complexes necessary for the initiation of RNA replication.  相似文献   

14.
Temperature-sensitive mutants of simian rotavirus SA11 were previously developed and organized into 10 of a possible 11 recombination groups on the basis of genome reassortment studies. Two of these mutants, tsF and tsG, map to genes encoding VP2 (segment 2) and VP6 (segment 6), respectively. To gain insight into the role of these proteins in genome replication, MA104 cells were infected with tsF or tsG and then maintained at permissive temperature (31 degrees C) until 9 h postinfection, when some cells were shifted to nonpermissive temperature (39 degrees C). Subviral particles (SVPs) were recovered from the infected cells at 10.5 and 12 h postinfection and assayed for associated replicase activity in a cell-free system shown previously to support rotavirus genome replication in vitro. The results showed that the level of replicase activity associated with tsF SVPs from cells shifted to nonpermissive temperature was ca. 20-fold less than that associated with tsF SVPs from cells maintained at permissive temperature. In contrast, the level of replicase activity associated with tsG SVPs from cells maintained at nonpermissive temperature was only slightly less (twofold or less) than that associated with tsG SVPs from cells maintained at permissive temperature. Analysis of the structure of replicase particles from tsG-infected cells shifted to nonpermissive temperature showed that they were similar in size and density to virion-derived core particles and contained the major core protein VP2 but lacked the major inner shell protein VP6. Taken together, these data indicate that VP2, but not VP6, is an essential component of enzymatically active replicase particles.  相似文献   

15.
Poliovirus (PV) infection induces the rearrangement of intracellular membranes into characteristic vesicles which assemble into an RNA replication complex. To investigate this transformation, endoplasmic reticulum (ER) membranes in HeLa cells were modified by the expression of different cellular or viral membrane-binding proteins. The membrane-binding proteins induced two types of membrane alterations, i.e., extended membrane sheets and vesicles similar to those found during a PV infection. Cells expressing membrane-binding proteins were superinfected with PV and then analyzed for virus replication, location of membranes, viral protein, and RNA by immunofluorescence and fluorescent in situ hybridization. Cultures expressing cellular or viral membrane-binding proteins, but not those expressing soluble proteins, showed a markedly reduced ability to support PV replication as a consequence of the modification of ER membranes. The altered membranes, regardless of their morphology, were not used for the formation of viral replication complexes during a subsequent PV infection. Specifically, membrane sheets were not substrates for PV-induced vesicle formation, and, surprisingly, vesicles induced by and carrying one or all of the PV replication proteins did not contribute to replication complexes formed by the superinfecting PV. The formation of replication complexes required active viral RNA replication. The extensive alterations induced by membrane-binding proteins in the ER resulted in reduced viral protein synthesis, thus affecting the number of cells supporting PV multiplication. Our data suggest that a functional replication complex is formed in cis, in a coupled process involving viral translation, membrane modification and vesicle budding, and viral RNA synthesis.  相似文献   

16.
Bos MP  Robert V  Tommassen J 《EMBO reports》2007,8(12):1149-1154
beta-Barrel proteins are present in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The central component of their assembly machinery is called Omp85 in bacteria. Omp85 is predicted to consist of an integral membrane domain and an amino-terminal periplasmic extension containing five polypeptide-transport-associated (POTRA) domains. We have addressed the function of these domains by creating POTRA domain deletions in Omp85 of Neisseria meningitidis. Four POTRA domains could be deleted with only slight defects in Omp85 function. Only the most carboxy-terminal POTRA domain was essential, as was the membrane domain. Thus, similar to the mitochondrial Omp85 homologue, the functional core of bacterial Omp85 consists of its membrane domain and a single POTRA domain, that is, POTRA5.  相似文献   

17.
18.
The Escherichia coli GroP- phenotype, associated with some dnaB mutants and measured as a decreased ability to plate lambda bacteriophage, was altered by some rpoB mutations. The rpoB effect showed an allele specificity. The participation both of dnaB and of lambda P alleles in the GroP- phenotype was also allele specific. It was concluded that RNA polymerase, dnaB protein, and lambda P protein form a functional complex required for lambda replication.  相似文献   

19.
20.

Background  

Bluetongue virus (BTV) particles consist of seven structural proteins that are organized into two capsids. In addition, BTV also encodes three non-structural (NS) proteins of which protein 2 (NS2) is the RNA binding protein and is also the major component of virus encoded inclusion bodies (VIBs), which are believed to be virus assembly sites. To investigate the contribution of NS2 in virus replication and assembly we have constructed inducible mammalian cell lines expressing full-length NS2. In addition, truncated NS2 fragments were also generated in an attempt to create dominant negative mutants for NS2 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号