首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The purpose of this study was to determine whether resistance exercise performance and postexercise muscle damage were altered when consuming a carbohydrate and protein beverage (CHO-PRO; 6.2% and 1.5% concentrations). Thirty-four male subjects (age: 21.5 +/- 1.7 years; height: 177.3 +/- 1.1 cm; weight: 77.2 +/- 2.2 kg) completed 3 sets of 8 repetitions at their 8 repetition maximum to volitional fatigue. The exercise order consisted of the high pull, leg curl, standing overhead press, leg extension, lat pull-down, leg press, and bench press. In a double-blind, posttest-only control group design, subjects consumed 355 ml of either CHO-PRO or placebo (electrolyte and artificial sweetener beverage) 30 minutes prior to exercise, 177 ml immediately prior to exercise, 177 ml halfway through the exercise bout, and 355 ml immediately following the exercise bout. There were no significant differences between groups relative to exercise performance. Cortisol was significantly elevated in the placebo group compared to the CHO-PRO group at 24 hours postexercise. Insulin was significantly elevated immediately pre-exercise, after the fourth lift, immediately postexercise, 1 hour, and 6 hours postexercise in CHO-PRO compared to the placebo group. Myoglobin levels in the placebo group approached significance halfway through the exercise bout and at 1 hour postexercise (p = 0.06 and 0.07, respectively) and were significantly elevated at 6 hours postexercise compared to the CHO-PRO group. Creatine kinase levels were significantly elevated in the placebo group at 24 hours postexercise compared to the CHO-PRO group. The CHO-PRO supplement did not improve performance during a resistance exercise bout, but appeared to reduce muscle damage, as evidenced by the responses of both myoglobin and creatine kinase. These results suggest the use of a CHO-PRO supplement during resistance training to reduce muscle damage and soreness.  相似文献   

2.
Exercise training reverses endothelial dysfunction, but the effect in young, healthy subjects is less clear. We determined the influence of maximal oxygen uptake (VO2max) and a single bout of high-intensity exercise on flow-mediated dilatation (FMD), brachial artery diameter, peak blood flow, nitric oxide (NO) bioavailability, and antioxidant status in highly endurance-trained men and their sedentary counterparts. Ten men athletes (mean +/- SEM age 23.5 +/- 0.9 years, height 182.6 +/- 2.4 cm, weight 72.5 +/- 2.4 kg, VO2max 75.9 +/- 0.8 mL.kg.min) and seven healthy controls (age 25.4 +/- 1.2 years, height 183.9 +/- 3.74 cm, weight 92.8 +/- 3.9 kg, VO2max 47.7 +/- 1.7 mL.kg.min) took part in the study. FMD, brachial artery diameter, and peak blood flow were measured using echo-Doppler before, 1 hour, 24 hours, and 48 hours after a single bout of interval running for 5 x 5 minutes at 90% of maximal heart rate. NO bioavailability and antioxidant status in blood were measured at all time points. Maximal arterial diameter and peak flow were 10-15% (P < 0.02) and 28-35% (P < 0.02) larger, respectively, in athletes vs. controls at all time points, and similar FMD were observed, apart from a transient decay of FMD in athletes 1 hour post exercise. NO bioavailability increased significantly after exercise in both groups and decreased to baseline levels after 24 hours in controls but remained increased 80% and 93% above baseline 24 and 48 hours post exercise in athletes. Antioxidant status was equal in the two groups at baseline and increased by approximately 10% 1 hour post exercise, an effect that lasted for 24 hours. Athletes had larger arterial diameter but similar FMD as untrained subjects, i.e., athletes had larger capacity for blood transport compared with their untrained counterparts. The observed FMD, bioavailability of NO, and antioxidant status in blood were highly dependent on the time elapsed after the exercise session.  相似文献   

3.
Since exercise training causes cardiac hypertrophy and a single bout induces mechanical stress to the heart, the present study aimed to characterize the activation patterns of multiple MAPK signaling pathways in the heart after a single bout of exercise or chronic exercises. The hearts of untrained rats received 5, 15, and 30 min of treadmill running exercise (Ex5 to Ex30) and rested for 0.5, 1, 3, 6, 12, and 24 h (PostEx0.5 to PostEx24) before subjecting them to the following different experiments. Activation of MAPKs (ERK, JNK, and p38) and MAPKKs (MEK1/2, SEK, and MKK3/6) increased immediately after acute exercise in a time-dependent manner, with ERK, JNK, and p38 peaking at Ex15, Ex15, and Ex30, respectively. Expression of immediate early genes (c-fos, c-jun, and c-myc) was augmented and activator protein-1 DNA binding activity was enhanced in untrained rats immediately after a single bout of exercise. The elevated levels of MAPKs declined to the resting levels within 24 h after exercise. In another set of experiments, following 4, 8, and 12 wk of exercise training, the rats exhibited significant cardiac hypertrophy by week 12. Activation of MAPKs in the 4-wk-trained rats increased after a 30-min single bout of exercise but decreased in the 8-wk group. Finally, the activity of MAPKs signaling in the 12-wk-trained rats exposed to an acute bout of exercise was unaltered. We conclude that exercise induces the activation of multiple MAPK (ERK, JNK, and p38) pathways in the heart, an effect that gradually declines with the development of exercise-induced cardiac hypertrophy.  相似文献   

4.
Previous research has demonstrated that prior exercise may reduce the magnitude of muscle soreness and impaired function (i.e., repeated bout effect [RBE]) observed during subsequent eccentric exercise. Previous investigations have predominantly used research designs that include single-joint exercise performed by untrained individuals. It is unknown how resistance trained individuals respond to novel multi-joint eccentric actions of the upper body and whether prior exercise offers protection. Thirty-one resistance trained men (23.4 +/- 3.5 y, 177.2 +/- 5.1 cm, 86.4 +/- 16.5 kg, mean +/- SD) were randomly assigned to repeated bout ([RB] N = 15) or single bout ([CON] N = 16) conditions. Both groups performed 100 eccentric actions of the bench press ([ECC] at 70% concentric 1 repetition maximum) to induce muscle injury. Bilateral maximal isometric force, dynamic exercise performance (e.g., bench press throws), and muscle soreness were measured before, immediately after, and at 24 and 48 hours post-ECC. Total work, percent fatigue, and rating of perceived exertion (ECC) data were collected during ECC. Those assigned to RB condition exhibited less fatigue (9.5 vs. 22.6%) and lower RPE (14.8 vs. 17.1) during ECC. A significant interaction (p < 0.05) was found such that RB individuals experienced less soreness at 24 (6.5 vs. 4.9) and 48 (6.6 vs. 3.9) hours postexercise than the CON condition. No significant group differences (p < 0.05) were found for any measured performance variable. Although soreness, fatigue, and RPE suggest a RBE, this was not found in regards to exercise performance. It appears that in trained men, performing a strenuous high-volume eccentric exercise bout 2 weeks prior to an identical future bout offers no additional amelioration of impaired exercise performance.  相似文献   

5.
The purpose of this study was to evaluate the time course of strength and power recovery after a single bout of strength training designed with fast and slow contraction velocities. Nineteen male subjects were randomly divided into 2 groups: the slow-velocity contraction (SV) group and the fast velocity contraction (FV) group. Resistance training protocols consisted of 5 sets of 12 repetition maximum (5 × 12RM) with 50 seconds of rest between sets and 2 minutes between exercises. Contraction velocity was controlled by the execution time for each repetition (SV-6 seconds to complete concentric and eccentric phases and for FV-1.5 seconds). Leg Press 45° 1RM (LP 1RM), horizontal countermovement jump (HCMJ), and right thigh circumference (TC) were accessed in 6 distinct moments: base (1 week before exercise), 0 (immediately after exercises), 24, 48, 72, and 96 hours after exercise protocol. The SV and FV presented significant LP 1RM decrements at 0, and these were still evident 24-48 hours postexercise. The magnitude of decline was significantly (p < 0.05) higher for FV. The SV and FV presented significant HCMJ decrements at 0, but only for FV were these still evident 24-72 hours postexercise. The SV and FV presented significant TC increments at 0, and these were still evident 24-48 hours postexercise for SV but for FV it continued up to 96 hours. The magnitude of increase was significantly (p < 0.05) higher for FV. In conclusion, the fast contraction velocity protocol resulted in greater decreases in LP 1RM and HCMJ performance, when compared with slow velocity. The results lead us to interpret that this variable may exert direct influence on acute muscle strength and power generation capacity.  相似文献   

6.
7.
The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer(473) and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 +/- 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased ( approximately 30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer(473) was approximately 50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer(473) and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer(473) on the improvement in insulin sensitivity requires further elucidation.  相似文献   

8.
Several redox-regulated responses to an acute exercise bout fail in aged animal skeletal muscle, including the ability to upregulate the expression of antioxidant defense enzymes and heat shock proteins (HSPs). These findings are generally derived from studies on sedentary rodent models and thus may be related to reduced physical activity and/or intraspecies differences as opposed to aging per se. This study, therefore, aimed to determine the influence of age and training status on the expression of HSPs, antioxidant enzymes, and NO synthase isoenzymes in quiescent and exercised human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis before and 3 days after an acute high-intensity-interval exercise bout in young trained, young untrained, old trained, and old untrained subjects. Levels of HSP72, PRX5, and eNOS were significantly higher in quiescent muscle of older compared with younger subjects, irrespective of training status. 3-NT levels were elevated in muscles of the old untrained but not the old trained state, suggesting that lifelong training may reduce age-related macromolecule damage. SOD1, CAT, and HSP27 levels were not significantly different between groups. HSP27 content was upregulated in all groups studied postexercise. HSP72 content was upregulated to a greater extent in muscle of trained compared with untrained subjects postexercise, irrespective of age. In contrast to every other group, old untrained subjects failed to upregulate CAT postexercise. Aging was associated with a failure to upregulate SOD2 and a downregulation of PRX5 in muscle postexercise, irrespective of training status. In conclusion, lifelong training is unable to fully prevent the progression toward a more stressed muscular state as evidenced by increased HSP72, PRX5, and eNOS protein levels in quiescent muscle. Moreover, lifelong training preserves some (e.g., CAT) but not all (e.g., SOD2, HSP72, PRX5) of the adaptive redox-regulated responses after an acute exercise bout. Collectively, these data support many but not all of the findings from previous animal studies and suggest parallel aging effects in humans and mice at rest and after exercise that are not modulated by training status in human skeletal muscle.  相似文献   

9.
目的:探讨一次和反复力竭性运动后不同时相大鼠血清肌酸激酶(CK)、肌酸激酶同工酶(CK-MB)与心肌损伤的变化规律。方法:通过力竭性游泳制备运动性心肌损伤模型,分别于运动后即刻和3 h6、h、12 h2、4 h4、8 h、96 h检测血清CK、CK-MB活性,并观察心肌组织形态学的动态变化。结果:大鼠一次力竭运动后0~12 h,CK和CK-MB活性明显增加,6 h达高峰;心肌炎细胞浸润灶逐渐增多,胞质嗜酸性增强,损伤高峰在12 h左右。反复力竭运动后0~12 h和48 h9、6 h CK和CK-MB活性皆明显增加,分别于运动后即刻和96 h达高峰;心肌细胞均有不同程度的损伤,48 h最严重。结论:过度运动和/或力竭性运动皆引起运动性心肌损伤,同时存在延迟性心肌损伤。  相似文献   

10.
Postprandial blood glucose and insulin levels are both risk factors for developing obesity, type-2 diabetes, and coronary heart diseases. To date, research has shown that a single bout of moderate- to high-intensity aerobic exercise performed 相似文献   

11.
Resistance exercise (RE) training, designed to induce hypertrophy, strives for optimal activation of anabolic and myogenic mechanisms to increase myofiber size. Clearly, activation of these mechanisms must precede skeletal muscle growth. Most mechanistic studies of RE have involved analysis of outcome variables after many training sessions. This study measured molecular level responses to RE on a scale of hours to establish a time course for the activation of myogenic mechanisms. Muscle biopsy samples were collected from nine subjects before and after acute bouts of RE. The response to a single bout was assessed at 12 and 24 h postexercise. Further samples were obtained 24 and 72 h after a second exercise bout. RE was induced by neuromuscular electrical stimulation to generate maximal isometric contractions in the muscle of interest. A single RE bout resulted in increased levels of mRNA for IGF binding protein-4 (84%), MyoD (83%), myogenin (approximately 3-fold), cyclin D1 (50%), and p21-Waf1 (16-fold), and a transient decrease in IGF-I mRNA (46%). A temporally conserved, significant correlation between myogenin and p21 mRNA was observed (r = 0.70, P < or = 0.02). The mRNAs for mechano-growth factor, IGF binding protein-5, and the IGF-I receptor were unchanged by RE. Total skeletal muscle RNA was increased 72 h after the second serial bout of RE. These results indicate that molecular adaptations of skeletal muscle to loading respond in a very short time. This approach should provide insights on the mechanisms that modulate adaptation to RE and may be useful in evaluating RE training protocol variables with high temporal resolution.  相似文献   

12.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

13.
The purposes of this study were to determine whether acute resistance exercise increases serum malondialdehyde (MDA) levels postexercise, and if so, whether resistance exercise training status influences the magnitude of the exercise-induced lipid peroxidation response. Twelve recreationally resistance-trained (RT) and 12 untrained (UT) men who did not have resistance exercise experience in the past year participated in this study. All subjects completed an 8-exercise circuit resistance exercise protocol consisting of 3 sets of 10 repetitions at 10 repetitions maximum for each exercise. Blood samples were obtained pre-exercise, at 5 minutes postexercise, and at 6, 24, and 48 hours postexercise. At pre-exercise, MDA (nmol.ml(-1)) averaged 3.41 +/- 0.25 (RT) and 3.20 +/- 0.25 (UT) and did not differ (p > 0.05) either between groups or over time. Creatine kinase (IU.L(-1)) was significantly (p < 0.05) elevated 5 minutes postexercise (170.6 +/- 25.8), 6 hours postexercise (290.3 +/- 34.4), 24 hours postexercise (365.5 +/- 49.9), and 48 hours postexercise (247.5 +/- 38.5) as compared with pre-exercise (126.4 +/- 20.2) for both groups. There was no difference (p > 0.05) in CK activity between groups. This study indicated that moderate-intensity whole-body resistance exercise had no effect on serum MDA concentration in RT and UT subjects.  相似文献   

14.
Previous work from our laboratory demonstrated that isometric handgrip (IHG) training improved local, endothelium-dependent vasodilation in medicated hypertensives [McGowan CL (PhD Thesis), 2006; McGowan et al. Physiologist 47: 285, 2004]. We investigated whether changes in the capacity of smooth muscle to dilate (regardless of endothelial factors) influenced this training-induced change, and we examined the acute vascular responses to a single bout of IHG. Seventeen subjects performed four 2-min unilateral IHG contractions at 30% of maximal voluntary effort, three times a week for 8 wk. Pre- and posttraining, brachial artery flow-mediated dilation (FMD, an index of endothelium-dependent vasodilation) and nitroglycerin-mediated maximal vasodilation (an index of endothelium-independent vasodilation) were measured in the exercised arm by using ultrasound before and immediately after acute IHG exercise. IHG training resulted in improved resting brachial FMD (P < 0.01) and no change in nitroglycerin-mediated maximal vasodilation. Pre- and posttraining, brachial artery FMD decreased following an acute bout of IHG exercise (normalized to peak shear rate, pre-, before IHG exercise: 0.01 +/- 0.002, after IHG exercise: 0.008 +/- 0.002%/s(-1); post-, before IHG exercise: 0.020 +/- 0.003, after IHG exercise: 0.010 +/- 0.003%/s(-1); P < 0.01). Posttraining, resting brachial artery FMD improved yet nitroglycerin-mediated maximal vasodilation was unchanged in persons medicated for hypertension. This suggests that the training-induced improvements in the resting brachial artery FMD were not due to underlying changes in the forearm vasculature. Acute IHG exercise attenuated brachial artery FMD, and although this impairment may be interpreted as hazardous to medicated hypertensives with already dysfunctional endothelium, the effects appear transient as repeated exposure to the IHG stimulus improved resting endothelium-dependent vasodilation.  相似文献   

15.
The purpose of this study was to determine the effects of yoga training and a single bout of yoga on the intensity of delayed onset muscle soreness (DOMS). 24 yoga-trained (YT; n = 12) and non-yoga-trained (CON; n = 12), matched women volunteers were administered a DOMS-inducing bench-stepping exercise. Muscle soreness was assessed at baseline, 24, 48, 72, 96, and 120 hours after bench-stepping using a Visual Analog Scale (VAS). Groups were also compared on body awareness (BA), flexibility using the sit-and-reach test (SR), and perceived exertion (RPE). Statistical significance was accepted at p 相似文献   

16.
This study compared serum total testosterone (TT) and free testosterone (FT) responses of young (20-26 years, n = 8), middle-aged (38-53 years, n = 7), and older (59-72 years, n = 9) men to resistance exercise. We also examined the relationships between testosterone (T) levels and strength, bone mineral density (BMD), and body composition variables for each age group. Subjects were tested for isotonic muscular strength (1 repetition maximum [1RM]), BMD (dual-energy x-ray absorptiometry [DXA]) and body composition (DXA). Each group performed an acute exercise protocol (3 sets, 10 repetitions, 80% of 1RM, 6 exercises). Blood samples were obtained at baseline, immediately postexercise, and 15 minutes postexercise for the TT and FT assays. The older age group had significantly (p < 0.05) lower T levels than the young group, but each group exhibited an increase (p < 0.05) in TT and FT immediately postexercise. Total T and FT were significantly correlated (p < 0.05) with strength in middle-aged and older men and with bone-free lean tissue mass in older men. In conclusion, middle-aged and older men showed similar relative T responses to those of younger men to a single bout of high-intensity resistance exercise. However, T levels were related to strength and muscle mass only in middle-aged or older men. On a practical application level, older men can complete a high-intensity resistance exercise program resulting in spikes in T that may attenuate age-related muscle and BMD loss.  相似文献   

17.
Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 +/- 0.04) and after (1.2 +/- 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 +/- 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 +/- 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.  相似文献   

18.
R Rauramaa 《Medical biology》1982,60(3):139-143
The effect of acute physical exercise on skeletal muscle glycogen content and on lipoprotein lipase activity of muscle, adipose and lung tissues was studied in streptozotocin diabetic and control rats. Rats were accustomed to treadmill running for two weeks after streptozotocin treatment. For an exercise bout of moderate intensity rats were randomly divided into two groups: one was sacrificed immediately after exercise and the other 24 hours afterwards. In addition there was a nonexercised sedentary group. No depletion of glycogen was observed after exercise in the vastus lateralis muscle of control (nondiabetic) rats. No difference in glycogen utilization was found in soleus muscle between diabetic and control rats. In diabetic rats a slight decrease occurred in the lipoprotein lipase activity in adipose tissue immediately after exercise, while in control rats there was a significant decline 24 hours after exercise. In soleus muscle a slight but significant increase of lipoprotein lipase activity occurred 24 hours after exercise in diabetic rats but not in control rats. The results suggest that nonketotic streptozotocin diabetes of short duration does not influence muscle glycogen in the resting state, but glycogen utilization is disturbed in white muscle during moderate treadmill running in untrained diabetic rats. The increase in lipoprotein lipase activity after physical exercise in red muscle of diabetic rats occurs during the recovery phase.  相似文献   

19.
The effects of eccentric exercise on whole body protein metabolism were compared in five young untrained [age 24 +/- 1 yr, maximal O2 uptake (VO2max) = 49 +/- 6 ml.kg-1.min-1] and five older untrained men (age 61 +/- 1 yr, VO2max = 34 +/- 2 ml.kg-1.min-1). They performed 45 min of eccentric exercise on a cycle ergometer at a power output equivalent to 80% VO2max (182 +/- 18 W). Beginning 5 days before exercise and continuing for at least 10 days after exercise, they consumed a eucaloric diet providing 1.5 g.kg-1.day-1 of protein. Leucine metabolism in the fed state was measured before, immediately after, and 10 days after exercise, with intravenous L-[1-13C]leucine as a tracer (0.115 mumol.kg-1.min-1). Leucine flux increased 9% immediately after exercise (P less than 0.011) and remained elevated 10 days later, with no effect of age. Leucine oxidation increased 19% immediately after exercise and remained 15% above baseline 10 days after exercise (P less than 0.0001), with no effect of age. In the young men, urinary excretion of 3-methylhistidine per gram of creatinine did not increase until 10 days postexercise (P less than 0.05), but in the older men, it increased 5 days after exercise and remained high through 10 days postexercise (P less than 0.05), averaging 37% higher than in the young men. These data suggest that eccentric exercise produces a similar increase in whole body protein breakdown in older and young men, but myofibrillar proteolysis may contribute more to whole body protein breakdown in the older group.  相似文献   

20.
We made sex-based comparisons of rates of myofibrillar protein synthesis (MPS) and anabolic signaling after a single bout of high-intensity resistance exercise. Eight men (20 ± 10 yr, BMI = 24.3 ± 2.4) and eight women (22 ± 1.8 yr, BMI = 23.0 ± 1.9) underwent primed constant infusions of l-[ring-(13)C(6)]phenylalanine on consecutive days with serial muscle biopsies. Biopsies were taken from the vastus lateralis at rest and 1, 3, 5, 24, 26, and 28 h after exercise. Twenty-five grams of whey protein was ingested immediately and 26 h after exercise. We also measured exercise-induced serum testosterone because it is purported to contribute to increases in myofibrillar protein synthesis (MPS) postexercise and its absence has been hypothesized to attenuate adaptative responses to resistance exercise in women. The exercise-induced area under the testosterone curve was 45-fold greater in men than women in the early (1 h) recovery period following exercise (P < 0.001). MPS was elevated similarly in men and women (2.3- and 2.7-fold, respectively) 1-5 h postexercise and after protein ingestion following 24 h recovery. Phosphorylation of mTOR(Ser2448) was elevated to a greater extent in men than women acutely after exercise (P = 0.003), whereas increased phosphorylation of p70S6K1(Thr389) was not different between sexes. Androgen receptor content was greater in men (main effect for sex, P = 0.049). Atrogin-1 mRNA abundance was decreased after 5 h recovery in both men and women (P < 0.001), and MuRF-1 expression was elevated in men after protein ingestion following 24 h recovery (P = 0.003). These results demonstrate minor sex-based differences in signaling responses and no difference in the MPS response to resistance exercise in the fed state. Interestingly, our data demonstrate that exercise-induced increases in MPS are dissociated from postexercise testosteronemia and that stimulation of MPS occurs effectively with low systemic testosterone concentrations in women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号