首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acute starvation attenuates the fever response to pathogens in several mammalian species. The underlying mechanisms responsible for this effect are not fully understood but may involve a compromised immune and/or thermoregulatory function, both of which are prerequisites for fever generation. In the present study, we addressed whether the impaired innate immune response contributes to the reported attenuation of the fever response in fasted rats during LPS-induced inflammation. Animals fasted for 48 h exhibited a significant and progressive hypothermia prior to drug treatment. An intraperitoneal injection of LPS (100 microg/kg) resulted in a significantly attenuated fever in the fasted animals compared with the fed counterparts. This attenuation was accompanied by the diminution in the concentration of some [TNF and IL-1 receptor antagonist (RA)] but not all (IL-1beta and IL-6) of the plasma cytokines normally elevated in association with the fever response. Nevertheless, fasting had no effect on the LPS-induced inflammatory responses at the level of the brain, as assessed by mRNA expressions of inhibitory factor(I)-kappaB, suppressor of cytokine signaling (SOCS3), IL-1beta, cyclooxygenase (COX)-2, and microsomal PGE synthase (mPGES)-1 in the hypothalamus, as well as by PGE2 elevations in the cerebrospinal fluid. In contrast, fasting significantly attenuated the fever response to central PGE2 injection. These results show that fasting does not alter the febrigenic signaling from the periphery to the brain important for central PGE2 synthesis but does affect thermoregulatory mechanisms downstream of and/or independent of central PGE2 action.  相似文献   

2.
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   

3.
Intracerebroventricular (ICV) administration of Neuromedin U (NMU), a hypothalamic neuropeptide, or leptin, an adipostat hormone released from adipose tissue, reduces food intake and increases energy expenditure. Leptin stimulates the release of NMU in vitro, and NMU expression is reduced in models of low or absent leptin. We investigated the role of NMU in mediating leptin-induced satiety. ICV administration of anti-NMU immunoglobulin G (IgG) (5 nmol) to satiated rats significantly increased food intake 4 h after injection, an effect seen for 相似文献   

4.
Patients with biliary tract obstruction have unexplained, inordinately high rates of perioperative morbidity and mortality, whereas cholestatic animals display abnormal hypothalamic responses to pyrogenic stimuli. We asked if obstructive cholestasis was associated with abnormal fever generation. Male Sprague-Dawley rats (250 g) underwent laparotomy for implantation of thermistors and either bile duct resection (BDR) or sham operation. After recovery, temperatures were recorded by telemetry and conscious, unrestrained rats in each group were injected intraperitoneally with either interleukin-1beta (IL-1beta;1 microg/kg) or Escherichia coli lipopolysaccharide (LPS; 50 microg/kg). Baseline temperatures in both groups were similar. Febrile responses after IL-1beta injection in BDR and sham groups were not significantly different. However, in response to LPS injection, BDR rats showed an initial hypothermia with a subsequently attenuated febrile response. Administration of anti-tumor necrosis factor-alpha (TNF-alpha) antibody 2 h before LPS injection blocked the LPS-induced hypothermia seen in BDR animals. However, serum levels of TNF-alpha were not significantly different between sham and BDR animals after LPS injection at any time point measured (0, 1.5, and 3 h).  相似文献   

5.
Calorie restriction (CR) has been demonstrated to alter cytokine levels; however, its potential to modify sickness behavior (fever, anorexia, cachexia) has not. The effect of CR on sickness behavior was examined in male C57BL/6J mice fed ad libitum or restricted 25% (CR25%) or restricted 50% (CR50%) in food intake for 28 days and injected with 50 μg/kg of LPS on day 29. Changes in body temperature, locomotor activity, body weight, and food intake were determined. A separate cohort of mice were fed ad libitum or CR50% for 28 days, and hypothalamic mRNA expression of inhibitory factor κB-α (IκB-α), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), suppressor of cytokine signaling 3 (SOCS3), IL-10, neuropeptide Y (NPY), leptin, proopiomelanocortin (POMC), and corticotrophin-releasing hormone (CRH) were determined at 0, 2, and 4 h post-LPS. CR50% mice did not develop fevers, whereas the CR25% mice displayed a fever shorter in duration but with the same peak as the controls. Both CR25% and CR50% mice showed no sign of anorexia and reduced cachexia after LPS administration. Hypothalamic mRNA expression of NPY and CRH were both increased by severalfold in CR50% animals preinjection compared with controls. The CR50% mice did not demonstrate the expected rise in hypothalamic mRNA expression of COX-2, microsomal prostaglandin E synthase-1, POMC, or CRH 2 h post-LPS, and leptin expression was decreased at this time point. Increases in SOCS3, IL-10, and IκB-α expression in CR50% animals were enhanced compared with ad libitum-fed controls at 4 h post-LPS. CR results in a suppression of sickness behavior in a dose-dependent manner, which may be due to CR attenuating proinflammatory pathways and enhancing anti-inflammatory pathways.  相似文献   

6.

Objective

Leptin resistance is a common hallmark of obesity. Rats on a free-choice high-fat high-sugar (fcHFHS) diet are resistant to peripherally administered leptin. The aim of this study was to investigate feeding responses to central leptin as well as the associated changes in mRNA levels in hypothalamic and mesolimbic brain areas.

Design and Methods

Rats on a CHOW or fcHFHS diet for 8 days received leptin or vehicle intracerebro(lateral)ventricularly (ICV) and food intake was measured 5 h and 24 h later. Four days later, rats were sacrificed after ICV leptin or vehicle and mRNA levels were quantified for hypothalamic pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) and for preproenkephalin (ppENK) in nucleus accumbens and tyrosine hydroxylase (TH) in ventral tegmental area (VTA).

Results

ICV leptin decreased caloric intake both in CHOW and fcHFHS rats. In fcHFHS, leptin preferentially decreased chow and fat intake. Leptin increased POMC and decreased NPY mRNA in CHOW, but not in fcHFHS rats. In CHOW rats, leptin had no effect on ppENK mRNA and decreased TH mRNA. In fcHFHS, leptin decreased ppENK mRNA and increased TH mRNA.

Conclusion

Despite peripheral and arcuate leptin resistance, central leptin suppresses feeding in fcHFHS rats. As the VTA and nucleus accumbens are still responsive to leptin, these brain areas may therefore, at least partly, account for the leptin-induced feeding suppression in rats on a fcHFHS diet.  相似文献   

7.
8.
9.
Bacterial endotoxin produces sepsis associated with alterations in body temperature (fever or hypothermia). The intraperitoneal administration of bacterial endotoxin, lipopolysaccharide (LPS; 50 microg/mouse) led to a decrease in colonic temperature starting 1 hr after the injection. The hypothermic effect was accompanied by a significant increase in hypothalamic leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) levels. 5-lipoxygenase inhibitor, zileuton (200 and 400 mg/kg, po) administered 30 min before LPS challenge significantly prevented hypothermia. However, non-selective cyclooxygenase inhibitor, indomethacin (10, 20 mg/kg, po) did not reverse the hypothermic response. Further, pretreatment of mice with zileuton prevented LPS-stimulated increase in hypothalamic LTB4 levels and caused a relatively small increase in PGE2 levels. Indomethacin had no effect on LTB4 levels but it reduced PGE2 levels. These results suggest a possible involvement of leukotrienes in LPS-induced hypothermia and the potential protective role of 5-lipoxygenase inhibitors in endotoxemia.  相似文献   

10.
Leptin regulates energy balance through central circuits that control food intake and energy expenditure, including proopiomelanocortin (POMC) neurons. POMC neuron-specific deletion of protein tyrosine phosphatase 1B (PTP1B) (Ptpn1(loxP/loxP) POMC-Cre), a negative regulator of CNS leptin signaling, results in resistance to diet-induced obesity and improved peripheral leptin sensitivity in mice, thus establishing PTP1B as an important component of POMC neuron regulation of energy balance. POMC neurons are expressed in the pituitary, the arcuate nucleus of the hypothalamus (ARH), and the nucleus of the solitary tract (NTS) in the hindbrain, and it is unknown how each population might contribute to the phenotype of POMC-Ptp1b(-/-) mice. It is also unknown whether improved leptin sensitivity in POMC-Ptp1b(-/-) mice involves altered melanocortin receptor signaling. Therefore, we examined the effects of hindbrain administration (4th ventricle) of leptin (1.5, 3, and 6 μg) or the melanocortin 3/4R agonist melanotan II (0.1 and 0.2 nmol) in POMC-Ptp1b(-/-) (KO) and control PTP1B(fl/fl) (WT) mice on food intake, body weight, spontaneous physical activity (SPA), and core temperature (T(C)). The results show that KO mice were hypersensitive to hindbrain leptin- and MTII-induced food intake and body weight suppression and SPA compared with WT mice. Greater increases in leptin- but not MTII-induced T(C) were also observed in KO vs. WT animals. In addition, KO mice displayed elevated hindbrain and hypothalamic MC4R mRNA expression. These studies are the first to show that hindbrain administration of leptin or a melanocortin receptor agonist alters energy balance in mice likely via participation of hindbrain POMC neurons.  相似文献   

11.
Circulating peptide leptin which is the product of the ob gene is known to provide feedback information on the size of fat stores to central OB-receptors that control food intake. Recently, leptin messenger RNA and leptin protein have been detected in gastric epithelium and leptin was found to be released by CCK into circulation but the physiological role of this gastric leptin remains unknown. As CCK has been reported to protect gastric mucosa against various noxious agents, we designed the study to determine the influence of leptin and CCK on the gastroprotection and the control of food intake and to compare them with classic gastroprotective substance, prostaglandin E2, in rats with acute gastric mucosal lesions induced by topical application of 75% ethanol. Four series of Wistar rats (A, B, C and D) were used to determine; A) the effects of various doses of leptin (0.1-10 microg/kg) given intraperitoneally (i.p.) on ethanol-induced gastric lesions, gastric blood flow (GBF) and plasma levels of immunoreactive leptin; B) the effects of various doses of CCK-8 (0.1-10 microg/kg i.p.) on ethanol-induced gastric lesions, GBF and plasma levels of leptin; C) the effects of various doses of PGE2 (12.5--100 microg/kg) given intragastrically (i.g.) on ethanol-induced gastric lesions and GBF and D) the influence of leptin, CCK and PGE2 on the intake of liquid meal in rats. Rats were anesthetized with ether 1 h after i.g. administration of 75% ethanol to measure the GBF using H2-gas clearance technique and blood samples were withdrawn for the measurement of plasma leptin levels by radioimmunoassay (RIA). Food intake was assessed in separate group of rats fasted 18 h and then fed with liquid caloric meal. Leptin, CCK and PGE2 reduced dose-dependently gastric lesions induced by 75% ethanol, the dose reducing these lesions by 50% (ED50) being, respectively, 1 microg/kg, 5 microg/kg and 20 microg/kg. The protective effects of leptin, CCK-8 and PGE2 were accompanied by significant attenuation of the fall of the GBF caused by ethanol. Leptin and CCK reduced also dose-dependently the food intake while PGE2 was not effective. Leptin and CCK resulted a dose-dependent increment in the plasma leptin levels. We conclude that: 1) exogenous leptin and CCK, causing similar increments in plasma immunoreactive leptin levels, protect dose-dependently gastric mucosa against the damage provoked by 75% ethanol; 2) Leptin and CCK afford similar gastroprotective activity to that attained with PGE2 but unlike PGE2 were highly effective in the reduction in food intake and 3) the protective effects of leptin, CCK and PGE2 were accompanied by significant increase of GBF suggesting that the protection afforded by these substances are mediated, at least in part, by gastric hyperemia.  相似文献   

12.
Leptin and thyroid hormones (TH) have the ability to increase energy expenditure. Biological effects of TH are dependent on thyroxine (T4) to triiodothyronine (T3) conversion by deiodinase type 1 (D1) and type 2 (D2). Leptin has been shown to stimulate the hypothalamus-pituitary-thyroid axis and, also, to modulate 5'-deiodinases in different tissues, depending on energetic status of animals. Here, we examined the acute effects of leptin on hypothalamic, pituitary and BAT D2 and pituitary D1 activities. Male fed rats received a single subcutaneous injection of saline or leptin (8 microg/100 g BW) and sacrificed 2 hours later. Leptin promoted an important decrease in hypothalamic D2 (55% reduction, p <0.001) with no changes in pituitary D2, in concomitance with a 2-fold rise in serum TSH, suggesting that leptin acted at hypothalamus in order to stimulate TRH-TSH axis. In addition, BAT D2 was decreased by 25% (p<0.05). In contrast, pituitary D1 showed a 2-fold increase (p<0.001), indicating that, as demonstrated before for liver and thyroid D1, the pituitary enzyme is also acutely up-regulated by leptin. Serum concentrations of insulin and TH of leptin-injected animals remained unchanged. Regulation of 5'-deiodinases directing the local T3 production, is a mechanism by which leptin may alter hypothalamic, pituitary and BAT functions.  相似文献   

13.
Leptin has been shown to modulate deiodinase type 1 (D1) and type 2 (D2) enzymes responsible for thyroxine (T4) to triiodothyronine (T3) conversion. Previously, it was demonstrated that a single injection of leptin in euthyroid fed rats rapidly increased liver, pituitary, and thyroid D1 activity, and simultaneously decreased brown adipose tissue (BAT) and hypothalamic D2 activity. We have now examined D1 and D2 activities, two hours after a single subcutaneous injection of leptin (8 microg/100 g BW) into hypo- and hyperthyroid rats. In hypothyroid rats, leptin did not modify pituitary, liver and thyroid D1, and thyroid D2 activity, while pituitary D2 was decreased by 41% (p<0.05) and hypothalamic D2 showed a 1.5-fold increase. In hyperthyroid rats, thyroid and pituitary D1, and pituitary and hypothalamic D2 were not affected by leptin injection, while liver D1 showed a 42% decrease (p<0.05). BAT D2 was decreased by leptin injection both in hypo- and hyperthyroid states (42 and 48% reduction, p<0.001). Serum TH and TSH showed the expected variations of hypo- and hyperthyroid state, and leptin had no effect. Serum insulin was lower in hypothyroid than in hyperthyroid rats and remained unchanged after leptin. Therefore, acute effects of leptin on D1 and D2 activity, expect for BAT D2, were abolished or modified by altered thyroid state, in a tissue-specific manner, showing an IN VIVO interplay of thyroid hormones and leptin in deiodinase regulation.  相似文献   

14.
15.
The localization of leptin and leptin receptors in the stomach and small intestine has been reported. Their function is still unknown, although leptin is a hormone that regulates appetite and fat-related metabolism. The small intestine is one of the important organs for regulating metabolism. The purpose of the present study was to investigate whether leptin regulates apoptosis in the small intestinal mucosa. Intestinal apoptosis was evaluated by percent fragmented DNA, electrophoresis, TUNEL staining, and western blotting analysis of caspase-3. Mucosal apoptosis in the rat jejunum and ileum was evaluated at 0, 3, 6, 12, and 24 hrs after injection. Rats were tested after ad libitum feeding and 24-hr fasting to exclude the anorectic effect of leptin. Leptin was injected intraperitoneally (ip) at a dose of 200 microg/rat and infused into the rat third cerebroventricle (icv) at a dose of 8 microg/rat. Leptin at a dose of 8 microg/rat significantly induced intestinal apoptosis in the small intestine at 3 and 6 hrs after icv administration in both ad libitum feeding and 24-hr fasted rats. This increase in apoptosis was not attenuated by vagotomy. Intestinal apoptosis increased 12 and 24 hrs after ip injection of leptin at a dose of 200 microg/rat. The peak of the increase in apoptosis in icv rats appeared earlier than that in ip rats. Leptin induced jejunal and ileal mucosal apoptosis in the rat, indicating that leptin might control intestinal function through the regulation of intestinal apoptosis.  相似文献   

16.
Hypothermia is one of the prominent features of the acute phase response to endotoxin (LPS). This study was undertaken to elucidate the effects of the COX-inhibitor Indomethacin (INDO) and the selective FLAP inhibitor MK-886 on LPS-induced hypothermia, mortality and increase in production of hypothalamic prostaglandin E(2) (PGE(2)) and leukotriene during endotoxemia.It has been demonstrated that INDO and MK-886 significantly attenuate the hypothermia induced by LPS, but MK-886 has a lesser (protective) effect than INDO. Only INDO was found to attenuate significantly the hyperthermic response to LPS. Furthermore, INDO significantly reduced the elevation in hypothalamic PGE(2) levels. MK-886 significantly reduced the elevation in hypothalamic leukotriene production only when LPS was given in a dose of 1mg/kg. Both drugs failed to reduce the elevation in plasma TNF-alpha and mortality induced by LPS.We conclude that in rats, febrile response to endotoxin involves many inflammatory mediators. However, it seems that PGE(2) and leukotrienes do not have a pivotal role in the mechanism of LPS-induced mortality.  相似文献   

17.
Thyroid hormone regulates food intake. We previously reported that rats with triiodothyronine (T3)-induced thyrotoxicosis display hyperphagia associated with suppressed circulating leptin levels, increased hypothalamic neuropeptide Y (NPY) mRNA and decreased hypothalamic pro-opiomelanocortin (POMC) mRNA. AMP-activated kinase (AMPK) is a serine/threonine protein kinase that is activated when cellular energy is depleted. We hypothesized that T3 causes an increase in hypothalamic AMPK activity, which in turn contributes to the development of T3-induced hyperphagia. Rats that were given s.c. injections of T3 (4.5 nmol/kg) had increased food intake 2 h later without alterations in NPY and POMC mRNA levels, but with increased hypothalamic phosphorylated AMPK (169%) and phosphorylated acetyl-CoA carboxylase (194%). To determine the more chronic effects of T3, rats were given 6 daily s.c. injection of T3 or the vehicle. Food intake was significantly increased. Multiple T3 injections increased hypothalamic phosphorylated AMPK (278%) and phosphorylated acetyl-CoA carboxylase (335%) compared to the controls. Intracerebroventricular administration of compound C, an AMPK inhibitor, blocked the food intake induced by a single or multiple injections of T3. Taken together, these results suggest that enhanced hypothalamic AMPK phosphorylation contributes to T3-induced hyperphagia. Hypothalamic AMPK plays an important role in the regulation of food intake and body weight.  相似文献   

18.
Leptin and ghrelin are known to be main hormones involved in the control of food intake, with opposing effects. Here we have explored whether changes in the leptin and ghrelin system are involved in the long-term effects of high-fat (HF) diet feeding in rats and whether sex-associated differences exist. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or an HF-diet. Food intake and body weight were followed. Gastric and serum levels of leptin and ghrelin, and mRNA levels of leptin (in stomach and adipose tissue), ghrelin (in stomach), and NPY, POMC, and leptin and ghrelin receptors (OB-Rb and GHS-R) (in the hypothalamus) were measured. In both males and females, total caloric intake and body weight were greater under the HF-diet feeding. In females, circulating ghrelin levels and leptin mRNA expression in the stomach were higher under HF-diet. HF-diet feeding also resulted in higher hypothalamic NPY/POMC mRNA levels, more marked in females, and in lower OB-Rb mRNA levels, more marked in males. In addition, in females, serum ghrelin levels correlated positively with hypothalamic NPY mRNA levels, and these with caloric intake. In males, hypothalamic OB-Rb mRNA levels correlated positively with POMC mRNA levels and these correlated negatively with caloric intake and with body weight. These data reflect differences between sexes in the effects of HF-diet feeding on food intake control systems, suggesting an impairment of the anorexigenic leptin-POMC system in males and an over-stimulation of the orexigenic ghrelin-NPY system in females.  相似文献   

19.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   

20.
Febrile responses to bacterial pathogens are attenuated near term of pregnancy in several mammalian species. It is unknown, however, whether this reflects a fundamental physiological adaptation of female rats or whether it is specific to pregnancy. The aims of this study therefore were 1) to determine whether febrile responses to the bacterial endotoxin lipopolysaccharide (LPS) are attenuated in female vs. male rats and, if so, to identify possible mechanisms involved in modulating this and 2) to assess whether plasma concentrations of the anti-inflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), an important regulator of fever, are dependent on the physiological state of the female and could therefore be involved in modulating febrile responses. We found febrile responses were attenuated in cycling female vs. male rats and also in near-term pregnant dams vs. cycling females after intraperitoneal injection of LPS (0.05 mg/kg). Plasma levels of IL-1ra were significantly greater in female rats after injection of LPS, particularly during pregnancy, than in males. This was accompanied by attenuated levels of hypothalamic IL-1beta and cyclooxygenase-2 mRNA, two key mediators of the febrile response, in female rats. Furthermore, increasing plasma levels of IL-1ra in male rats by intraperitoneal administration of the recombinant antagonist attenuated hypothalamic mRNA levels of these mediators after LPS. These data suggest that there is a fundamental difference in febrile response to LPS between the genders that is likely regulated by IL-1ra. This may be an important mechanism that protects the developing fetus from potentially deleterious consequences of maternal fever during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号