首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to forced swimming (FS), AVP is released somato-dendritically within the supraoptic nucleus (SON) and paraventricular nucleus (PVN), but not from neurohypophyseal terminals into blood. Together with AVP, oxytocin (OXT) is released within the SON and PVN. Here, we studied the role of intra-SON and intra-PVN OXT in the regulation of local AVP release and into the blood in male rats. Within the SON, bilateral retrodialysis of an OXT receptor antagonist (OXT-A) increased local AVP release in response to FS [60 s, 21 degrees C, vehicle twofold, not significant (ns); OXT-A: 15-fold increase, P < 0.05] without significantly affecting basal AVP release. In addition, local OXT-A elevated plasma AVP secretion under basal conditions (twofold increase, P < 0.05) without further elevation after FS. Within the PVN, exposure to FS elevated local AVP release, reaching significance only in the OXT-A group (vehicle: 1.4-fold, ns; OXT-A: 1.6-fold increase, P = 0.050). Bilateral OXT-A into the PVN did not affect peripheral AVP secretion either under basal or stress conditions. Basal ACTH concentrations tended to be elevated by local OXT-A within the PVN (1.7-fold increase, P = 0.076). In contrast, the swim-induced ACTH secretion was attenuated after retrodialysis of OXT-A within both the SON (at 5 min) and PVN (at 15 min) (P < 0.05 both) compared with vehicle. The results demonstrate a receptor-mediated effect of OXT within the SON and PVN on local and neurohypophyseal AVP release, which depends upon the activity conditions. Further, while exerting an inhibitory effect on hypothalamo-pituitary-adrenal axis activity under basal conditions, hypothalamic OXT is essential for an adequate acute ACTH response.  相似文献   

2.
3.
Adult male Wistar rats were trained in the Morris water maze (MWM) on 3 consecutive days to find a visible platform. Concomitantly, microdialysis samples from the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei were collected in order to monitor local release of the neuropeptides vasopressin (AVP) and oxytocin (OXT), respectively, during controllable swim stress. Additionally, a separate set of animals was equipped with chronic jugular venous catheters to collect blood samples for analyzing plasma concentrations of corticotropin (ACTH) and corticosterone during training in the MWM. As measured by microdialysis, swimming in the MWM caused a significantly increased release of AVP within the PVN and of OXT within the SON on each of the 3 test sessions. In contrast to OXT in the SON, basal AVP concentrations in the PVN tended to rise from day to day. Plasma ACTH and corticosterone were found to be similarly elevated in response to MWM exposure on each of the test sessions. Taken together, these data demonstrate that testing in the MWM is not only associated with a significant activation of the hypothalamo-pituitary-adrenal axis but also with an intrahypothalamic release of AVP and OXT. If compared with findings using repeated forced swimming as an uncontrollable stressor (Wotjak, C.T., Ganster, J., Kohl, G., Holsboer, F., Landgraf, R., Engelmann, M., 1998. Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85, 1209-1222), the present results suggest that (1) similarities in the release profiles of AVP in the PVN and plasma hormone levels are fairly independent from the controllability of the stressor and seem, thus, to primarily relate to the physical demands of the task, whereas (2) the different intra-SON OXT release profiles might be linked to the controllability of the stressor.  相似文献   

4.
Summary. Neurons of the hypothalamo-neurohypophyseal system (HNS) are known to contain high amounts of neuronal nitric oxide (NO) synthase (nNOS). NO produced by those neurons is commonly supposed to be involved as modulator in the release of the two nonapeptides vasopressin (AVP) and oxytocin into the blood stream. Previous studies showed that forced swimming fails to increase the release of AVP into the blood stream while its secretion into the hypothalamus is triggered. We investigated here whether hypothalamically acting NO contributes to the control of the AVP release into blood under forced swimming conditions. Intracerebral microdialysis and in situ hybridization were employed to analyze the activity of the nitrergic system within the supraoptic nucleus (SON), the hypothalamic origin of the HNS. A 10-min forced swimming session failed to significantly alter the local NO release as indicated both by nitrite and, the main by-product of NO synthesis, citrulline levels in microdialysis samples collected from the SON. Microdialysis administration of NO directly into the SON increased the concentration of AVP in plasma samples collected during simultaneous forced swimming. In an additional experiment the effect of the defined stressor exposure on the concentration of mRNA coding for nNOS within the SON was investigated by in situ hybridization. Forced swimming increased the expression of nNOS mRNA at two and four hours after onset of the stressor compared to untreated controls. Taken together, our results imply that NO within the SON does not contribute to the regulation of the secretory activity of HNS neurons during acute forced swimming. Increased nNOS mRNA in the SON after forced swimming and the increase in AVP release in the presence of exogenous NO under forced swimming points to a possible role of NO in the regulation of the HNS under repeated stressor exposure.Current address: Departments of Behavioral Neuroscience and Neurology, Oregon Health & Science University, Portland, OR 97239, U.S.A.  相似文献   

5.
Yang J  Liang JY  Zhang XY  Qiu PY  Pan YJ  Li P  Zhang J  Hao F  Wang DX  Yan FL 《Peptides》2011,32(5):1042-1046
Our pervious study has demonstrated that the hypothalamic supraoptic nucleus (SON) plays a role in pain modulation. Oxytocin (OXT) and arginine vasopressin (AVP) are the important hormones synthesized and secreted by the SON. The experiment was designed to investigate which hormone was relating with the antinociceptive role of the SON in the rat. The results showed that (1) microinjection of l-glutamate sodium into the SON increased OXT and AVP concentrations in the SON perfusion liquid, (2) pain stimulation induces OXT, but not AVP release in the SON, and (3) intraventricular injection (pre-treatment) with OXT antiserum could inhibit the pain threshold increase induced by SON injection of l-glutamate sodium, but administration of AVP antiserum did not influence the antinociceptive role of SON stimulation. The data suggested that the antinociceptive role of the SON relates to OXT rather than AVP.  相似文献   

6.
E. Fliers  D.F. Swaab 《Peptides》1983,4(2):165-170
The activity of the hypothalamo-neurohypophyseal system (HNS) was determined in male Wistar rats from 3 to 32 months of age. Plasma levels of vasopressin (AVP) and oxytocin (OXT) were measured by means of a radioimmunoassay. In addition, the distribution of the Golgi apparatus marker enzyme thiamine-pyrophosphatase (TPP-ase) was measured as a parameter for neurosecretory activity in the hypothalamic supraoptic and paraventricular nuclei (SON and PVN). Plasma levels of radioimmunoassayable AVP were increased in the 32-month-old animals. Plasma levels of radioimmunoassayable OXT in 32-month-old animals did not differe from the levels found in the youngest group, but were higher than in 11-month-old animals. Neurosecretory activity in the SON was similar in 3- and 32-month-old animals, whereas in the PVN neurosecretory activity was increased in the 32-month-old animals. Urine excretion decreased between 6 and 11 months of age and remained on the same level until 32 months of age. In other words, instead of a loss of HNS function as has been suggested in the literature, an increased neurosecretory activity was observed in aged rats.  相似文献   

7.
M Morris  J Ross  D K Sundberg 《Peptides》1985,6(5):949-955
The in vitro synthesis of catecholamines and the secretion of vasopressin (AVP) and oxytocin (OT) was measured in localized regions of the hypothalamo-neurohypophyseal system in the spontaneously hypertensive rat (SHR). The posterior pituitary (PP), median eminence (ME) and supraoptic (SON) and paraventricular (PVN) nuclear regions were incubated in vitro in media containing 3H-tyrosine. Media and tissue levels of AVP and OT were measured as well as norepinephrine and dopamine content and biosynthesis. There were no differences in peptide release in either the PP, ME or SON. However, there was a marked increase in peptide release from the PVN of the SHR. Media AVP levels were 0.3 pg/ml/micrograms protein in the WKY as compared to 2.1 pg/ml/micrograms protein in the SHR. OT release was increased 2 fold, from 0.85 to 1.7 pg/ml/micrograms protein. PVN content of both AVP and OT was significantly lower in the SHR. ME and SON peptide levels were not changed, while neurohypophyseal AVP levels were increased in the SHR. With regard to the catecholamines appreciable norepinephrine synthesis was measured in the PVN and SON while there was little 3H-norepinephrine in the ME or PP. In the hypertensive rat, there was an increase in norepinephrine synthesis in the PVN with no change in the SON. These results provide further support for fundamental changes in the catecholaminergic and peptidergic systems of the hypothalamo-neurohypophyseal axis of the SHR.  相似文献   

8.
Mineralocorticoids play a predominant role in development of salt appetite and hypertension. Since vasoactive peptides could mediate the central effects of mineralocorticoids, we evaluated changes of immunoreactive (IR) arginine vasopressin (AVP) in the paraventricular (PVN) and supraoptic (SON) hypothalamic nucleus during DOCA-induced salt appetite. In one model, rats having free access to water and 3% NaCl during 9 (prehypertensive stage) or 21 days (hypertensive stage) received DOCA (s.c., 10 mg/rat/in alternate days). A decrease in the IR cell area, number of IR cells and staining intensity was obtained in magnocellular PVN of rats treated during 9 days. After 21 days IR cell area and number of cells in the PVN also decreased, but staining intensity of remaining cells was normal. The same parameters were unchanged in the SON. In another model, animals treated with DOCA during 9 days had only access to 3% NaCl or water. The IR cell area in PVN and SON significantly increased in mineralocorticoid-treated and control animals, both drinking 3% NaCl. Staining intensity (PVN and SON) and number of IR cells (PVN) also augmented in DOCA-treated animals drinking salt respect of a group drinking water. Plasma AVP in rats treated with DOCA and offered salt and water, exhibited a 2-2.5 fold increase at the time of salt appetite induction. Plasma AVP was substantially higher in rats drinking salt only, while the highest levels were present in salt-drinking DOCA-treated rats. Thus, peptide depletion in the PVN may be due to increased release, because reduced levels of hypothalamic and posterior pituitary AVP were measured in this model. In rats drinking salt only the substantial increase of IR AVP in the PVN and SON, may be due to dehydration and hyperosmosis. Because DOCA-salt treated rats showed higher AVP levels in the PVN compared to untreated rats drinking salt only, it is possible that DOCA sensitized PVN cells to increase AVP production. The results suggest the vasopressinergic system could mediate some central functions of mineralocorticoids.  相似文献   

9.
目前已知下丘脑是应激反应的关键性调节中枢,下丘脑内一氧化氮是否参与应激反应尚未见报道。本文运用NADPH-d酶组化技术和计算机图象分析方法,对束缚应激大鼠下丘脑室旁核(PVN)和视上核(SON)一氧化氮合酶(NOS)阳性神经元的相对切面面积和平均灰度进行了分析。结果显示,大鼠在急性束缚应激4小时后,其下丘脑PVN和SON内的NOS阳性神经元的平均灰度值与正常大鼠比较均明显降低(P<0.001);SON的NOS阳性神经元的相对切面面积明显大于正常大鼠(P<0.001),但PVN的NOS阳性神经元的相对切面面积未见明显改变(P>0.05)。以上结果说明束缚应激使大鼠下丘脑PVN和SON的NOS活性增强  相似文献   

10.
To reveal character of interaction of catecholamines (CA) and NO in regulation of development and of the functional state of vasopressinergic (VP-ergic) neurons of supraoptic (SON) and paraventricular (PVN) nuclei, the female rats were injected intraperitoneally with the inhibitor of CA synthesis α-methyl-p-tyrosine, daily, from the 13th to the 20th days of pregnancy. Rat pups born by the females administered with saline at the same period of pregnancy as well as intact pups and adult rats were used as control. Expression of neuronal NO-synthase (nNOS) in neurons of SON and PVN of rat pups at early stages of postnatal development was found to be significantly higher than the definitive level, which allows suggesting participation of NO in development of hypothalamic VP-ergic neurons. The revealed differences of periods of the maximal nNOS expression in the SON and PVN neurons have permitted suggesting development of SON to be completed earlier than that of PVN. The pups exposed to stress at the last third of embryonic development had a long-lasting effect on the state of VP-ergic neurons of the pups after birth. The nNOS expression in neurons does not change, which suggests that NO is not involved in regulation of VP-ergic neurons after exposure to stress at early stages of ontogenesis. A decrease of CA level in the brain at the last third of embryogenesis led to a long preserved decrease of the functional activity of VP-ergic neurons. The nNOS expression in VP-ergic neurons of SON and PVN rose substantially under effect of a compensatory enhancement of tyrosine hydroxylase (TH) expression in neurons of SON and of an increase of the level of CA-ergic innervation of PVN. Thus, we have shown that a decrease of CA level in the embryonic brain leads to an increase of nNOS expression of hypothalamic VP-ergic neurons of rat pups after birth and that the character of NO action on function of VP-ergic neurons does not differ from that of adult animals as soon as at early stages of ontogenesis.  相似文献   

11.
The role of the noradrenergic nucleus Locus Coeruleus (LC) on hemorrhage-induced vasopressin (AVP) and oxytocin (OT) secretion was examined. Rats with LC lesion were submitted to three 1-min hemorrhage sessions at 5-min intervals; 15% of the total blood volume was withdrawn in each session. OT and AVP were measured in plasma, paraventricular (PVN) and supraoptic (SON) nuclei and in posterior pituitary (PP). LC Lesion did not affect basal plasma AVP or OT levels, but partly blocked the increase in plasma AVP and OT induced by hemorrhage. Hemorrhage produced decreases in content of AVP and OT in the PVN and SON and increased levels in the PP. These responses were attenuated in the lesioned group, but only in the PVN and PP. Data suggest a stimulatory role of the inputs from LC to PVN neurons on hemorrhage-induced OT and AVP secretion and that, this pathway is critical in the hypo-volemic neuroendocrine reflex.Special Issue Dedicated to Miklós Palkovits.  相似文献   

12.
Yang J  Song CY  Liu WY  Lin BC 《Peptides》2006,27(12):3341-3346
The effect of arginine vasopressin (AVP) on rat antinociception was investigated. Intraventricular injection of 50 or 100 ng AVP dose-dependently increased the pain threshold; in contrast, intraventricular injection of 10 μl anti-AVP serum decreased the pain threshold; both intrathecal injection of 200 ng AVP or 10 μl anti-AVP serum and intravenous injection of 5 μg AVP or 200 μl anti-AVP serum did not influence the pain threshold. Pain stimulation reduced AVP concentration in hypothalamic paraventricular nucleus (PVN), and elevated AVP concentration in hypothalamic supraoptical nucleus (SON) and periaqueductal gray (PAG), but no change in AVP concentration was detected in pituitary, spinal cord and serum. The results indicated that AVP regulation of antinociception was limited to the brain nuclei.  相似文献   

13.
Proper development of the hypothalamic-pituitary axis requires precise neuronal signaling to establish a network that regulates homeostasis. The developing hypothalamus and pituitary utilize similar signaling pathways for differentiation in embryonic development. The Notch signaling effector gene Hes1 is present in the developing hypothalamus and pituitary and is required for proper formation of the pituitary, which contains axons of arginine vasopressin (AVP) neurons from the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). We hypothesized that Hes1 is necessary for the generation, placement and projection of AVP neurons. We found that Hes1 null mice show no significant difference in cell proliferation or death in the developing diencephalon at embryonic day 10.5 (e10.5) or e11.5. By e16.5, AVP cell bodies are formed in the SON and PVN, but are abnormally placed, suggesting that Hes1 may be necessary for the migration of AVP neurons. GAD67 immunoreactivity is ectopically expressed in Hes1 null mice, which may contribute to cell body misplacement. Additionally, at e18.5 Hes1 null mice show continued misplacement of AVP cell bodies in the PVN and SON and additionally exhibit abnormal axonal projection. Using mass spectrometry to characterize peptide content, we found that Hes1 null pituitaries have aberrant somatostatin (SS) peptide, which correlates with abnormal SS cells in the pituitary and misplaced SS axon tracts at e18.5. Our results indicate that Notch signaling facilitates the migration and guidance of hypothalamic neurons, as well as neuropeptide content.  相似文献   

14.
Abstract: Recent studies have shown that the neuropeptides arginine-8-vasopressin (AVP) and oxytocin (OXT) are released within the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to microdialysis of these nuclei with high-NaCl perfusion media. These results suggest an inherent osmosensitivity of SON and PVN neurons. To investigate whether the observed release of AVP/OXT is a unique phenomenon to these neuropeptides, several brain regions were examined for the release of amino acids or dopamine in response to high- or low-NaCl stimulation. Urethane-anesthetized male Sprague-Dawley rats were perfused with five-ion solution using U-shaped microdialysis probes. Samples were collected at 30-min intervals and analyzed for amino acids and dopamine by HPLC. In the dialysates of all perfusion areas, including the SON, PVN, hippocampus, and striatum, concentrations of Asp, Glu, Ser, Gln, Gly, taurine (Tau), and γ-aminobutyric acid (GABA) were significantly increased during perfusion with high-NaCl medium. This release was found to be dose dependent when tested in the hippocampus and striatum with perfusion medium containing 0.5 or 1.0 M NaCl. However, only the release of Glu and Ser was found to be Ca2+ dependent. In contrast, the use of mannitol, a nonionic osmolyte, for perfusions in the striatum in concentrations of 0.5 and 1 M resulted in reduced levels of amino acids in the dialysates (Glu, Ser, Gln, and Tau). Low-NaCl perfusion medium (0.01 M) resulted in significantly increased Glu, Tau, Gly, and GABA levels in the striatum. In addition, dopamine levels in striatal dialysates were significantly increased during stimulation with 1 M NaCl. These results indicate that stimulation with high NaCl concentrations affects the release of several neurotransmitters and is not specific for AVP and OXT. The described phenomenon of the release of amino acids in response to this stimulation seems to be a response to the changed ionic concentration rather than to the osmolality. In light of these findings shown for amino acids and dopamine as well as those previously reported for AVP, OXT, and angiotensin, it would appear that sensitivity to tonicity changes brought about by microdialysis may be a feature of many transmitter systems.  相似文献   

15.
We examined the effects of intracerebroventricular (i.c.v.) administration of adrenomedullin 2 (AM2) on plasma oxytocin (OXT) and arginine vasopressin (AVP) levels in conscious rats. Plasma OXT levels were markedly increased 5 min after i.c.v. administration of AM2 (1 nmol/rat) compared with vehicle and remained elevated in samples taken at 10, 15, 30, and 60 min. By contrast, plasma AVP levels were not significantly elevated in samples taken between 5 and 180 min after i.c.v. administration of AM2 except at the 30-min time point. Fos-like immunoreactivity (Fos-LI) was observed in various brain areas, including the paraventricular (PVN) and the supraoptic nuclei (SON) after i.c.v. administration of AM2 (2 nmol/rat) in conscious rats (measured at 90 min post-AM2 infusion). Dual immunostaining for OXT/Fos and AVP/Fos showed that OXT-LI neurons predominantly exhibited nuclear Fos-LI compared with AVP-LI neurons in the PVN and the SON. In situ hybridization histochemistry showed that i.c.v. administration of AM2 (0.2, 1, and 2 nmol/rat) caused marked induction of the expression of the c-fos gene in the PVN and the SON. This induction was significantly reduced by pretreatment with both the calcitonin gene-related peptide (CGRP) antagonist CGRP-(8-37) (3 nmol/rat) and the AM receptor antagonist AM-(22-52) (27 nmol/rat). These results suggest that centrally administered AM2 mainly activates OXT-secreting neurons in the PVN and the SON, at least in part through the CGRP and/or AM receptors with marked elevation of plasma OXT levels in conscious rats.  相似文献   

16.
Yu KL  Tamada Y  Suwa F  Fang YR  Tang CS 《Life sciences》2006,78(10):1143-1148
Many histochemical investigations indicated that the oxytocin (OXY), the arginine vasopressin (AVP) and the nitric oxide synthase (NOS) have been synthesized in the supraoptic nucleus (SON) neurons. The objective of this study was to examine the age-related expression of the OXY, the AVP and the NOS in the SON of the young adult (2-month-old) and the aged (24-month-old) rats. The histochemistry for reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d; marker for the NOS) and the double labeling histochemistry for the OXY/NADPH-d or the AVP/NADPH-d were employed, and the quantitative analysis was performed with a computer-assisted image processing system. In comparison of the young adult and the aged group, the cell number, the cell size and the reactive density of the NOS-expressing neurons showed a significant increase along with age, and these evidences suggested the age-related increase of the nitric oxide (NO) production. The age-related significant increase was not detected in the number of the OXY/NOS-expressing neurons in the dorsal part, but was detected in the number of the AVP/NOS-expressing neurons in the ventral part. Based on our histochemical findings and reports demonstrated by other authors, we attempted to discuss the physiological role of NOS for the secretion of posterior pituitary hormones along with age.  相似文献   

17.
Growth hormone (GH) secretagogues (GHS) are synthetic peptidyl and non-peptidyl molecules which possess strong, dose-dependent and reproducible GH releasing effects as well as significant prolactin (PRL) and adrenocorticotropic hormone (ACTH) releasing effects. The neuroendocrine activities of GHS are mediated by specific receptors mainly present at the pituitary and hypothalamic level but also elsewhere in the central nervous system. GHS release GH via actions at the pituitary and (mainly) the hypothalamic level, probably acting on GH releasing hormone (GHRH) secreting neurons and/or as functional somatostatin antagonists. GHS release more GH than GHRH and the coadministration of these peptides has a synergistic effect but these effects need the integrity of the hypothalamo-pituitary unit. The GH releasing effect of GHS is generally gender-independent and undergoes marked age-related variations reflecting age-related changes in the neural control of anterior pituitary function. The PRL releasing activity of GHS probably comes from direct pituitary action, which indeed is slight and independent of both age and gender. The acute stimulatory effect of GHS on ACTH/cortisol secretion is similar to that of corticotropin releasing hormone (CRH) and arginine vasopressin (AVP). In physiological conditions, the ACTH releasing activity of GHS is mediated by central mechanisms, at least partially, independent of both CRH and AVP but probably involving GABAergic mechanisms. The ACTH releasing activity of GHS is gender-independent and undergoes peculiar age-related variations showing a trend towards increase in ageing. GHS possess specific receptors also at the peripheral levels in endocrine and non-endocrine human tissues. Cardiac receptors are specific for peptidyl GHS and probably mediate GH-independent cardiotropic activities both in animals and in humans.  相似文献   

18.
By employing nitric acid reductase-spectrophotometry and NADPH-diaphorase/AVP cytochemistry technique, the effects of magnetic field on NO in hypothalamus and relations to Paraventricular Nucleus (PVN), Periventricular Nucleus (PEN), Supraoptic Nucleus (SON) and Suprachiasmatic Nucleus (SCN) were investigated. It was found that the NADPH-d positive neurons and some NADPH-d/AVP dually stained neurons existed in PVN, PEN, SON, but not in SCN, and the magnetic field induced NO (OD) increase there and the high NO (OD) level lasted for 3 hours. The results suggested that NO (OD) increase after the treatment of magnetic field in hypothalamus may result from strong expression of NOergic neurons in the PVN, PEN and SON. The coexistance of NO and AVP may play important role in the regulation of endocrine and neuroendocrine by the magnetic field.  相似文献   

19.
《Life sciences》1995,56(15):PL277-PL283
In previous experiments we have shown that nitric oxide (NO) was able to modulate CRH and ACTH release from cultured rat hypothalamic and anterior pituitary cells, in vitro. Now, we show experimental evidence of an involvement of NO in basal and interleukin-1β-induced prolactin (PRL) release. L-NG-nitroarginine, an inhibitor of nitric oxide synthetase and hemoglobin, a NO scavenger, impaired basal and interleukin-1-β-induced PRL release, while molsidomine, a NO donor, was able to release PRL and to amplify interleukin-1-β-induced PRL release, confirming a modulatory role for nitric oxide in pituitary hormone secretion. On the other hand, no evidence regarding a possible role of prostaglandin E2 (PGE2) in IL-1β-induced PRL release came out from our experiments.  相似文献   

20.
Dakine N  Oliver C  Grino M 《Life sciences》2000,67(23):2827-2844
Hypothyroid pups were obtained by adding methimazole in the mother's drinking water from day 15 of gestation and sacrificed at 4, 8 or 15 days. Circulating corticosterone decreased at all ages, while CBG concentrations diminished at day 4, increased at day 8 and did not change at day 15 in hypothyroid rats. As opposed to controls, plasma ACTH concentrations decreased steadily with age while there was an accumulation of ACTH in the anterior pituitary of hypothyroid 15-day-old rats. Anterior pituitary POMC contents were unaffected by the treatment. In the hypothalamic PVN, CRF mRNA levels in the total population of CRF-synthesizing cells and in the CRF+/AVP+ subpopulation were below those of controls whatever the age considered while AVP mRNA in the CRF+/AVP+ subpopulation did not change at day 4 and decreased at day 8 and 15 in hypothyroid animals. Both the number of cell bodies expressing detectable levels of CRF mRNA and the percentage of CRF and AVP colocalization decreased at day 4 and were unchanged thereafter. CRF and AVP immunoreactivity in the zona externa of the median eminence increased with age but was not affected by methimazole treatment. The concentration of AVP mRNA in the magnocellular cell bodies of the PVN and the SON as well as AVP immunoreactivity in the zona interna of the median eminence were not changed by the treatment at days 4 and 8. In hypothyroid 15-day-old rats, SON AVP mRNA increased, AVP immunoreactivity decreased while plasma osmolality was enhanced. In conclusion, our data demonstrate that experimental hypothyroidism impairs specifically the maturation of hypothalamic parvocellular CRF and AVP gene expression during the stress hyporesponsive period. These observations suggest that the physiological peak in plasma thyroxine concentrations that occur between day 8-12 may participate in the maturation of hypothalamic CRF- and AVP-synthesizing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号