首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found that antitumor drugs such as cytotrienin A, camptothecin, taxol, and 5-fluorouracil induced the activation of a 36-kDa protein kinase (p36 myelin basic protein (MBP) kinase) during apoptosis in human promyelocytic leukemia HL-60 cells. This p36 MBP kinase, which phosphorylates MBP in an in-gel kinase assay, results from the caspase-3-mediated proteolytic cleavage of MST/Krs protein, a mammalian Ste20-like serine/threonine kinase. Herein the correlation between cytotrienin A-induced apoptosis and the activation of MST/Krs proteins was examined in human tumor cell lines, including leukemia-, lung-, epidermoid-, cervix-, stomach-, and brain-derived cell lines. In cytotrienin A-sensitive cell lines, we observed a strong activation of p36 MBP kinase by cleavage of the C-terminal regulatory domain of full-length MST/Krs proteins by caspase-3. When the kinase-inactive mutant form of MST/Krs protein was overexpressed in cytotrienin A-sensitive HL-60 cells, the cytotrienin A-induced apoptosis was partially inhibited. Because cytotrienin A also activated c-Jun N-terminal kinase, we examined the effect of the expression of dominant negative c-Jun on cytotrienin A-induced apoptosis. The expression of dominant negative c-Jun also partially inhibited cytotrienin A-induced apoptosis. Furthermore, coexpression of kinase-inactive MST/Krs protein and dominant negative c-Jun completely suppressed cytotrienin A-induced apoptosis. These findings suggest that the proteolytic activation of MST/Krs and c-Jun N-terminal kinase activation are involved in cytotrienin A-induced apoptosis in human tumor cell lines.  相似文献   

2.
In addition to its conventional role during protein synthesis, eukaryotic elongation factor 1A is involved in other cellular processes. Several regions of interaction between eukaryotic elongation factor 1A and the translational apparatus or the cytoskeleton have been identified, yet the roles of the different post-translational modifications of eukaryotic elongation factor 1A are completely unknown. One amino acid modification, which so far has only been found in eukaryotic elongation factor 1A, consists of ethanolamine-phosphoglycerol attached to two glutamate residues that are conserved between mammals and plants. We now report that ethanolamine-phosphoglycerol is also present in eukaryotic elongation factor 1A of the protozoan parasite Trypanosoma brucei, indicating that this unique protein modification is of ancient origin. In addition, using RNA-mediated gene silencing against enzymes of the Kennedy pathway, we demonstrate that phosphatidylethanolamine is a direct precursor of the ethanolamine-phosphoglycerol moiety. Down-regulation of the expression of ethanolamine kinase and ethanolamine-phosphate cytidylyltransferase results in inhibition of phosphatidylethanolamine synthesis in T. brucei procyclic forms and, concomitantly, in a block in glycosylphosphatidylinositol attachment to procyclins and ethanolamine-phosphoglycerol modification of eukaryotic elongation factor 1A.  相似文献   

3.
CCK increases the rate of net protein synthesis in rat pancreatic acini by activating initiation and elongation factors required for translation. The immunosuppressant FK506 inhibits the Ca2+-calmodulin-dependent phosphatase calcineurin in pancreatic acinar cells and blocks pancreatic growth induced by chronic CCK treatment. To test a requirement for calcineurin in the activation of the translational machinery stimulated by CCK, we evaluated the effects of FK506 on protein synthesis and on regulatory initiation and elongation factors in rat pancreatic acini in vitro. CCK acutely increased protein synthesis in acini from normal rats with a maximum increase at 100 pM CCK to 170 ± 11% of control. The immunosuppressant FK506 dose-dependently inhibited CCK-stimulated protein synthesis over the same concentration range that blocked calcineurin activity, as assessed by dephosphorylation of the calcineurin substrate calcium-regulated heat-stable protein of 24 kDa. Another immunosuppressant, cyclosporin A, inhibited protein synthesis, but its effects appeared more complex. FK506 also inhibited protein synthesis stimulated by bombesin and carbachol. FK506 did not significantly affect the activity of the initiation factor-2B, or the phosphorylation of the initiation factor-2, ribosomal protein protein S6, or the mRNA cap binding protein eukaryotic initiation factor (eIF) 4E. Instead, blockade of calcineurin with FK506 reduced the phosphorylation of the eIF4E binding protein, reduced the formation of the eIF4F complex, and increased the phosphorylation of eukaryotic elongation factor 2. From these results, we conclude that calcineurin activity is required for protein synthesis, and this action may be related to an effect on the formation of the mRNA cap binding complex and the elongation processes. exocrine pancreas; cholecystokinin; translation initiation factors; protein phosphatase 2B; immunosuppressants  相似文献   

4.
Translational infidelity and human cancer: role of the PTI-1 oncogene   总被引:2,自引:0,他引:2  
Several components of the eukaryotic protein synthesis apparatus have been associated with oncogenic transformation of cells. Altered expression of translation elongation factor 1 alpha (EF-1 alpha), a core component of protein synthesis and closely related sequences have been linked with transformed phenotypes by several independent studies, in diverse systems. A dominant acting oncogene, prostate tumor inducing gene-1 (PTI-1) has provided further evidence for this link. PTI-1 appears to be a hybrid molecule with components derived from both prokaryotic and eukaryotic origins. The predicted protein coding moiety represents an EF-1 alpha molecule, truncated N-terminal to amino acid residue 68 and having six additional point mutations. This coding sequence is fused to a 5' untranslated region (UTR) showing strongest homology to ribosomal RNA derived from Mycoplasma hyopneumoniae. Expression studies using the cloned cDNA in nude mouse tumor formation assays have confirmed the oncogenic nature of the molecule. A broad spectrum of tumor derived cell lines, from varied tissue sources and blood samples from patients having confirmed prostate carcinoma, all scored positive for expression of PTI-1, while corresponding normal tissues or blood samples were negative. Based on its near identity to EF-1 alpha, it is proposed that PTI-1 represents a new class of oncogene whose transforming capacity probably arises through mechanisms including: (i) protein translational infidelity, resulting in the synthesis of mutant polypeptides due to loss of proofreading function during peptide chain elongation, (ii) by its association with and alteration of the cytoskeleton, (iii) by impinging on one particular or several different signal transduction pathways through its properties as a G-protein.  相似文献   

5.
eIF5A has a function in the elongation step of translation in yeast   总被引:1,自引:0,他引:1  
The putative translation factor eIF5A is essential for cell viability and is highly conserved throughout evolution. Here, we describe genetic interactions between an eIF5A mutant and a translation initiation mutant (eIF4E) or a translation elongation mutant (eEF2). Polysome profile analysis of single and double mutants revealed that mutation in eIF5A reduces polysome run-off, contrarily to translation initiation mutants. Moreover, the polysome profile of an eIF5A mutant alone is very similar to that of a translation elongation mutant. Furthermore, depletion of eIF5A causes a significant decrease in total protein synthesis and an increase of the average ribosome transit time. Finally, we demonstrate that the formation of P bodies is inhibited in an eIF5A mutant, similarly to the effect of the translation elongation inhibitor cycloheximide. Taken together, these results not only reinforce a role for eIF5A in translation but also strongly support a function for eIF5A in the elongation step of protein synthesis.  相似文献   

6.
7.
The catalytic moiety of Pseudomonas exotoxin A (domain III or PE3) inhibits protein synthesis by ADP-ribosylation of eukaryotic elongation factor 2. PE3 is widely used as a cytocidal payload in receptor-targeted protein toxin conjugates. We have designed and characterized catalytically inactive fragments of PE3 that are capable of structural complementation. We dissected PE3 at an extended loop and fused each fragment to one subunit of a heterospecific coiled coil. In vitro ADP-ribosylation and protein translation assays demonstrate that the resulting fusions—supplied exogenously as genetic elements or purified protein fragments—had no significant catalytic activity or effect on protein synthesis individually but, in combination, catalyzed the ADP-ribosylation of eukaryotic elongation factor 2 and inhibited protein synthesis. Although complementing PE3 fragments are catalytically less efficient than intact PE3 in cell-free systems, co-expression in live cells transfected with transgenes encoding the toxin fusions inhibits protein synthesis and causes cell death comparably as intact PE3. Complementation of split PE3 offers a direct extension of the immunotoxin approach to generate bispecific agents that may be useful to target complex phenotypes.  相似文献   

8.
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.  相似文献   

9.
Legionella is a pathogenic Gram-negative bacterium that can multiply inside of eukaryotic cells. It translocates numerous bacterial effector proteins into target cells to transform host phagocytes into a niche for replication. One effector of Legionella pneumophila is the glucosyltransferase Lgt1, which modifies serine 53 in mammalian elongation factor 1A (eEF1A), resulting in inhibition of protein synthesis and cell death. Here, we demonstrate that similar to mammalian cells, Lgt1 was severely toxic when produced in yeast and effectively inhibited in vitro protein synthesis. Saccharomyces cerevisiae strains, which were deleted of endogenous eEF1A but harbored a mutant eEF1A not glucosylated by Lgt1, were resistant toward the bacterial effector. In contrast, deletion of Hbs1, which is also an in vitro substrate of the glucosyltransferase, did not influence the toxic effects of Lgt1. Serial mutagenesis in yeast showed that Phe(54), Tyr(56) and Trp(58), located immediately downstream of serine 53 of eEF1A, are essential for the function of the elongation factor. Replacement of serine 53 by glutamic acid, mimicking phosphorylation, produced a non-functional eEF1A, which failed to support growth of S. cerevisiae. Our data indicate that Lgt1-induced lethal effect in yeast depends solely on eEF1A. The region of eEF1A encompassing serine 53 plays a critical role in functioning of the elongation factor.  相似文献   

10.
Regulation at the level of translation in eukaryotes is feasible because of the longer lifetime of eukaryotic mRNAs in the cell. The elongation stage of mRNA translation requires a substantial amount of energy and also eukaryotic elongation factors (eEFs). The important component of eEFs, i.e. eEF2 promotes the GTP-dependent translocation of the nascent protein chain from the A-site to the P-site of the ribosome. Mostly the eEF2 is regulated by phosphorylation and dephosphorylation by a specific kinase known as eEF2 kinase, which itself is up-regulated by various mechanisms in the eukaryotic cell. The activity of this kinase is dependent on calcium ions and calmodulin. Recently it has been shown that the activity of eEF2 kinase is regulated by MAP kinase signalling and mTOR signalling pathway. There are also various stimuli that control the peptide chain elongation in eukaryotic cell; some stimuli inhibit and some activate eEF2. These reports provide the mechanisms by which cells likely serve to slow down protein synthesis and conserve energy under nutrient deprived conditions via regulation of eEF2. The regulation via eEF2 has also been seen in mammary tissue of lactating cows, suggesting that eEF2 may be a limiting factor in milk protein synthesis. Regulation at this level provides the molecular understanding about the control of protein translocation reactions in eukaryotes, which is critical for numerous biological phenomenons. Further the elongation factors could be potential targets for regulation of protein synthesis like milk protein synthesis and hence probably its foreseeable application to synthetic biology.  相似文献   

11.
The genomic RNA of encephalomyocarditis virus (EMCV) encodes a single polyprotein, and the primary scission of the polyprotein occurs between nonstructural proteins 2A and 2B by an unknown mechanism. To gain insight into the mechanism of 2A-2B processing, we first translated the 2A-2B region in vitro with eukaryotic and prokaryotic translation systems. The 2A-2B processing occurred only in the eukaryotic systems, not in the prokaryotic systems, and the unprocessed 2A-2B protein synthesized by a prokaryotic system remained uncleaved when incubated with a eukaryotic cell extract. These results suggest that 2A-2B processing is a eukaryote-specific, co-translational event. To define the translation factors required for 2A-2B processing, we constituted a protein synthesis system with eukaryotic elongation factors 1 and 2, eukaryotic release factors 1 and 3 (eRF1 and eRF3), aminoacyl-tRNA synthetases, tRNAs, ribosome subunits, and a plasmid template that included the hepatitis C virus internal ribosome entry site. We successfully reproduced 2A-2B processing in the reconstituted system even without eRFs. Our results indicate that this unusual event occurs in the elongation phase of translation.  相似文献   

12.
Summary. An increasing number of evidences suggest the involvement of the eukaryotic elongation factor 1A, a core component of the protein synthesis machinery, at the onset of cell transformation. In fact, eEF1A is shown to be up-regulated in cell death; moreover, it seems to be involved in the regulation of ubiquitin-mediated protein degradation. In addition, eEF1A undergoes several post-translational modifications, mainly phosphorylation and methylation, that generally influence the activity of the protein. This article summarizes the present knowledges on the several extra-translational roles of eEF1A also in order to understand as the protein synthesis regulatory mechanisms could offer tools for cancer intervention.  相似文献   

13.
Xu WL  Wang XL  Wang H  Li XB 《Gene》2007,389(1):27-35
The translation elongation factor 1A, eEF1A, plays an important role in protein synthesis, catalyzing the binding of aminoacyl-tRNA to the A-site of the ribosome by a GTP-dependent mechanism. To investigate the role of eEF1A for protein synthesis in cotton fiber development, nine different cDNA clones encoding eukaryotic translation elongation factor 1A were isolated from cotton (Gossypium hirsutum) fiber cDNA libraries. The isolated genes (cDNAs) were designated cotton elongation factor 1A gene GhEF1A1, GhEF1A2, GhEF1A3, GhEF1A4, GhEF1A5, GhEF1A6, GhEF1A7, GhEF1A8, GhEF1A9, respectively. They share high sequence homology at nucleotide level (71-99% identity) in the coding region and at amino acid level (96-99% identity) among each other. Phylogenetic analysis demonstrated that the nine GhEF1A genes can be divided into 5-6 subfamilies, indicating the divergence occurred in structures of the genes as well as the deduced proteins during evolution. Real-time quantitative RT-PCR analysis revealed that GhEF1A genes are differentially expressed in different tissues/organs. Of the nine GhEF1A genes, five are expressed at relatively high levels in young fibers. Further analysis indicated that expressions of the GhEF1As in fiber are highly developmental-regulated, suggesting that protein biosynthesis is very active at the early fiber elongation.  相似文献   

14.
Abstract

In addition to the small and large ribosomal subunits, aminoacyl-tRNAs, and an mRNA, cellular protein synthesis is dependent on translation factors. The eukaryotic translation initiation factor 5A (eIF5A) and its bacterial ortholog elongation factor P (EF-P) were initially characterized based on their ability to stimulate methionyl-puromycin (Met-Pmn) synthesis, a model assay for protein synthesis; however, the function of these factors in cellular protein synthesis has been difficult to resolve. Interestingly, a conserved lysine residue in eIF5A is post-translationally modified to hypusine and the corresponding lysine residue in EF-P from at least some bacteria is modified by the addition of a β-lysine moiety. In this review, we provide a summary of recent data that have identified a novel role for the translation factor eIF5A and its hypusine modification in the elongation phase of protein synthesis and more specifically in stimulating the production of proteins containing runs of consecutive proline residues.  相似文献   

15.
16.
Published data have been analysed to determine the rate constants governing the exchange of GDP in the complex of the eukaryotic protein synthesis initiation factor eIF-2 with GDP, catalysed by eIF-2B. The interaction of eIF-2B with eIF-2.GDP appears to include a very high 'on' rate constant of up to 4 x 10(8) M-1 sec-1 - a value very similar to that found by others for the interaction of the bacterial elongation factors Tu and Ts. Assuming a substituted enzyme mechanism that leads to displacement of GDP and ultimately to formation of a quaternary complex eIF-2B.eIF-2.GTP.methionyl-tRNA, minimum rate constants have been estimated for the additional reactions assuming in vivo rates of protein synthesis. Rate constants for the other reactions are unexceptional.  相似文献   

17.
The plant translational apparatus   总被引:23,自引:0,他引:23  
Protein synthesis in both eukaryotic and prokaryotic cells is a complex process requiring a large number of macromolecules: initiation factors, elongation factors, termination factors, ribosomes, mRNA, amino-acylsynthetases and tRNAs. This review focuses on our current knowledge of protein synthesis in higher plants.Abbreviations eIF eukaryotic initiation factor - eEF eukaryotic elongation factor - EST expressed sequence tag - eRF eukaryotic release factor - GUS -glucoronidase - HCR heme-controlled repressor - PKR double-stranded - RNA activated protein kinase - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

18.
在蛋白质合成过程中,除核糖体、氨酰 tRNA和mRNA外,还有多种翻译因子参与其中。真核翻译起始因子5A(eukaryotic translation initiation factor 5A, eIF5A)是维持细胞活性必不可少的翻译因子,在进化上高度保守。eIF5A是真核细胞中唯一含有羟腐胺赖氨酸(hypusine)的蛋白质,该翻译后修饰对eIF5A的活性至关重要。1978年,人们首次鉴定出eIF5A,认为它在翻译起始阶段促进第1个肽键的形成。直到2013年才证实它主要在翻译延伸阶段调控含多聚脯氨酸基序蛋白质的翻译。在经过四十多年研究后,人们对eIF5A的功能有了新的认识。近期基于核糖体图谱数据的分析表明,eIF5A能够缓解翻译延伸过程中核糖体在多种基序处的停滞,并不局限于多聚脯氨酸基序,并且它还能够通过促进肽链的释放增强翻译终止。此外,eIF5A还可以通过调控某些蛋白质的翻译,间接影响细胞内的各种生命活动。本文综述了eIF5A的多种翻译后修饰、在蛋白质合成和细胞自噬过程中的调控作用以及与人类疾病的关系,并与细菌及古细菌中的同源蛋白质进行了比较,探讨了该因子在进化中的保守性,以期为相关领域的研究提供一定的理论基础。  相似文献   

19.
Acute pancreatitis (AP) has been shown in some studies to inhibit total protein synthesis in the pancreas, whereas in other studies, protein synthesis was not affected. Previous in vitro work has shown that high concentrations of cholecystokinin both inhibit protein synthesis and inhibit the activity of the guanine nucleotide exchange factor eukaryotic initiation factor (eIF)2B by increasing the phosphorylation of eIF2alpha. We therefore evaluated in C57BL/6 mice the effects of caerulein-induced AP on pancreatic protein synthesis, eIF2B activity and other protein translation regulatory mechanisms. Repetitive hourly injections of caerulein were administered at 50 microg/kg ip. Pancreatic protein synthesis was reduced 10 min after the initial caerulein administration and was further inhibited after three and five hourly injections. Caerulein inhibited the two major regulatory points of translation initiation: the activity of the guanine nucleotide exchange factor eIF2B (with an increase of eIF2alpha phosphorylation) and the formation of the eIF4F complex due, in part, to degradation of eIF4G. This inhibition was not accounted for by changes in the upstream stimulatory pathway, because caerulein activated Akt as well as phosphorylating the downstream effectors of mTOR, 4E-BP1, and ribosomal protein S6. Caerulein also decreased the phosphorylation of the eukaryotic elongation factor 2, implying that this translation factor was not inhibited in AP. Thus the inhibition of pancreatic protein synthesis in this model of AP most likely results from the inhibition of translation initiation as a result of increased eIF2alpha phosphorylation, reduction of eIF2B activity, and the inhibition of eIF4F complex formation.  相似文献   

20.
Studies to elucidate the reactions that occur at the eukaryotic replication fork have been limited by the model systems available. We have established a method for isolating and characterizing Simian Virus 40 (SV40) replication complexes. SV40 rolling circle complexes are isolated using paramagnetic beads and then incubated under replication conditions to obtain continued elongation. In rolling circle replication, the normal mechanism for termination of SV40 replication does not occur and the elongation phase of replication is prolonged. Thus, using this assay system, elongation phase reactions can be examined in the absence of initiation or termination. We show that the protein requirements for elongation of SV40 rolling circles are equivalent to complete SV40 replication reactions. The DNA produced by SV40 rolling circles is double-stranded, unmethylated and with a much longer length than the template DNA. These properties are similar to those of physiological replication forks. We show that proteins associated with the isolated rolling circles, including SV40 T antigen, DNA polymerase alpha, replication protein A (RPA) and RF-C, are necessary for continued DNA synthesis. PCNA is also required but is not associated with the isolated complexes. We present evidence suggesting that synthesis of the leading and lagging strands are co-ordinated in SV40 rolling circle replication. We have used this system to show that both RPA-protein and RPA-DNA interactions are important for RPA's function in elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号