首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replication of herpes simplex virus type 1 (HSV-1) DNA is associated with a high degree of homologous recombination. While cellular enzymes may take part in mediating this recombination, we present evidence for an HSV-1-encoded recombinase activity. HSV-1 alkaline nuclease, encoded by the UL12 gene, is a 5'-->3' exonuclease that shares homology with Redalpha, commonly known as lambda exonuclease, an exonuclease required for homologous recombination by bacteriophage lambda. The HSV-1 single-stranded DNA binding protein ICP8 is an essential protein for HSV DNA replication and possesses single-stranded DNA annealing activities like the Redbeta synaptase component of the phage lambda recombinase. Here we show that UL12 and ICP8 work together to effect strand exchange much like the Red system of lambda. Purified UL12 protein and ICP8 mediated the complete exchange between a 7.25-kb M13mp18 linear double-stranded DNA molecule and circular single-stranded M13 DNA, forming a gapped circle and a displaced strand as final products. The optimal conditions for strand exchange were 1 mM MgCl(2), 40 mM NaCl, and pH 7.5. Stoichiometric amounts of ICP8 were required, and strand exchange did not depend on the nature of the double-stranded end. Nuclease-defective UL12 could not support this reaction. These data suggest that diverse DNA viruses appear to utilize an evolutionarily conserved recombination mechanism.  相似文献   

2.
Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5′-to-3′ exonuclease (UL12) and a single strand annealing protein [SSAP (ICP8)] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA) was increased in HSV-infected cells, while homologous recombination (HR), non-homologous end joining (NHEJ) and alternative non-homologous end joining (A-NHEJ) were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection.  相似文献   

3.
The replication of herpes simplex virus type 1 (HSV-1) is associated with a high degree of homologous recombination, which is likely to be mediated, in part, by HSV-1-encoded proteins. We have previously shown that the HSV-1 encoded ICP8 protein and alkaline nuclease UL12 are capable of catalyzing an in vitro strand-exchange reaction. Here, we show, by electron microscopy, that the products of the strand exchange reaction between linear double-stranded DNA and circular single-stranded DNA consist of the expected joint molecule forms: sigma, alpha, and gapped circles. Other exonucleases, such as lambda Red alpha, which, like UL12, digests 5'-3', as well as Escherichia coli exonuclease III (ExoIII), which digests 3'-5', could substitute for UL12 in the strand exchange reaction by providing a resected DNA end. ICP8 generated the same intermediates and strand exchange products when the double-stranded DNA substrate was preresected by any of the nucleases. Using substrates with large regions of non-homology we found that pairing by ICP8 could be initiated from the middle of a DNA molecule and did not require a homologous end. In this reaction, the resection of a DNA end by the nuclease is required to reveal homologous sequences capable of being paired by ICP8. This study further illustrates the complexity of the multi-functional ICP8 protein.  相似文献   

4.
The herpes simplex virus type 1 (HSV-1) alkaline nuclease, encoded by the UL12 gene, plays an important role in HSV-1 replication, as a null mutant of UL12 displays a severe growth defect. Although the precise in vivo role of UL12 has not yet been determined, several in vitro activities have been identified for the protein, including endo- and exonuclease activities, interaction with the HSV-1 single-stranded DNA binding protein ICP8, and an ability to promote strand exchange in conjunction with ICP8. In this study, we examined a naturally occurring N-terminally truncated version of UL12 called UL12.5. Previous studies showing that UL12.5 exhibits nuclease activity but is unable to complement a UL12 null virus posed a dilemma and suggested that UL12.5 may lack a critical activity possessed by the full-length protein, UL12. We constructed a recombinant baculovirus capable of expressing UL12.5 and purified soluble UL12.5 from infected insect cells. The purified UL12.5 exhibited both endo- and exonuclease activities but was less active than UL12. Like UL12, UL12.5 could mediate strand exchange with ICP8 and could also be coimmunoprecipitated with ICP8. The primary difference between the two proteins was in their intracellular localization, with UL12 localizing to the nucleus and UL12.5 remaining in the cytoplasm. We mapped a nuclear localization signal to the N terminus of UL12, the domain absent from UL12.5. In addition, when UL12.5 was overexpressed so that some of the enzyme leaked into the nucleus, it was able to partially complement the UL12 null mutant.  相似文献   

5.
Taylor TJ  Knipe DM 《Journal of virology》2004,78(11):5856-5866
In this study, we have used immunoprecipitation and mass spectrometry to identify over 50 cellular and viral proteins that are associated with the herpes simplex virus 1 (HSV-1) ICP8 single-stranded DNA-binding protein. Many of the coprecipitating cellular proteins are known members of large cellular complexes involved in (i) DNA replication or damage repair, including RPA and MSH6; (ii) nonhomologous and homologous recombination, including the catalytic subunit of the DNA-dependent protein kinase, Ku86, and Rad50; and (iii) chromatin remodeling, including BRG1, BRM, hSNF2H, BAF155, mSin3a, and histone deacetylase 2. It appears that DNA mediates the association of certain proteins with ICP8, while more direct protein-protein interactions mediate the association with other proteins. A number of these proteins accumulate in viral replication compartments in the infected cell nucleus, indicating that these proteins may have a role in viral replication. WRN, which functions in cellular recombination pathways via its helicase and exonuclease activities, is not absolutely required for viral replication, as viral yields are only very slightly, if at all, decreased in WRN-deficient human primary fibroblasts compared to control cells. In Ku70-deficient murine embryonic fibroblasts, viral yields are increased by almost 50-fold, suggesting that the cellular nonhomologous end-joining pathway inhibits HSV replication. We hypothesize that some of the proteins coprecipitating with ICP8 are involved in HSV replication and may give new insight into viral replication mechanisms.  相似文献   

6.
Herpes simplex virus 1 (HSV-1) is a double-stranded DNA virus that replicates in the nucleus of its human host cell and is known to interact with many cellular DNA repair proteins. In this study, we examined the role of cellular mismatch repair (MMR) proteins in the virus life cycle. Both MSH2 and MLH1 are required for efficient replication of HSV-1 in normal human cells and are localized to viral replication compartments. In addition, a previously reported interaction between MSH6 and ICP8 was confirmed by coimmunoprecipitation and extended to show that UL12 is also present in this complex. We also report for the first time that MLH1 associates with ND10 nuclear bodies and that like other ND10 proteins, MLH1 is recruited to the incoming genome. Knockdown of MLH1 inhibits immediate-early viral gene expression. MSH2, on the other hand, which is generally thought to play a role in mismatch repair at a step prior to that of MLH1, is not recruited to incoming genomes and appears to act at a later step in the viral life cycle. Silencing of MSH2 appears to inhibit early gene expression. Thus, both MLH1 and MSH2 are required but appear to participate in distinct events in the virus life cycle. The observation that MLH1 plays an earlier role in HSV-1 infection than does MSH2 is surprising and may indicate a novel function for MLH1 distinct from its known MSH2-dependent role in mismatch repair.  相似文献   

7.
Infected cell protein 8 (ICP8) from herpes simplex virus 1 was first identified as a single-strand (ss) DNA-binding protein. It is essential for, and abundant during, viral replication. Studies in vitro have shown that ICP8 stimulates model replication reactions, catalyzes annealing of complementary ssDNAs and, in combination with UL12 exonuclease, will catalyze ssDNA annealing homologous recombination. DNA annealing and strand transfer occurs within large oligomeric filaments of ssDNA-bound ICP8. We present the first 3D reconstruction of a novel ICP8–ssDNA complex, which seems to be the basic unit of the DNA annealing machine. The reconstructed volume consists of two nonameric rings containing ssDNA stacked on top of each other, corresponding to a molecular weight of 2.3 MDa. Fitting of the ICP8 crystal structure suggests a mechanism for the annealing reaction catalyzed by ICP8, which is most likely a general mechanism for protein-driven DNA annealing.  相似文献   

8.
Trego KS  Parris DS 《Journal of virology》2003,77(23):12646-12659
The origin (ori)-binding protein of herpes simplex virus type 1 (HSV-1), encoded by the UL9 open reading frame, has been shown to physically interact with a number of cellular and viral proteins, including three HSV-1 proteins (ICP8, UL42, and UL8) essential for ori-dependent DNA replication. In this report, it is demonstrated for the first time that the DNA polymerase processivity factor, UL42 protein, provides accessory function to the UL9 protein by enhancing the 3'-to-5' helicase activity of UL9 on partially duplex nonspecific DNA substrates. UL42 fails to enhance the unwinding activity of a noncognate helicase, suggesting that enhancement of unwinding requires the physical interaction between UL42 and UL9. UL42 increases the steady-state rate for unwinding a 23/38-mer by UL9, but only at limiting UL9 concentrations, consistent with a role in increasing the affinity of UL9 for DNA. Optimum enhancement of unwinding was observed at UL42/UL9 molecular ratios of 4:1, although enhancement was reduced when high UL42/DNA ratios were present. Under the assay conditions employed, UL42 did not alter the rate constant for dissociation of UL9 from the DNA substrate. UL42 also did not significantly reduce the lag period which was observed following the addition of UL9 to DNA, regardless of whether UL42 was added to DNA prior to or at the same time as UL9. Moreover, addition of UL42 to ongoing unwinding reactions increased the steady-state rate for unwinding, but only after a 10- to 15-min lag period. Thus, the increased affinity of UL9 for DNA most likely is the result of an increase in the rate constant for binding of UL9 to DNA, and it explains why helicase enhancement is observed only at subsaturating concentrations of UL9 with respect to DNA. In contrast, ICP8 enhances unwinding at both saturating and subsaturating UL9 concentrations and reduces or eliminates the lag period. The different means by which ICP8 and UL42 enhance the ability of UL9 to unwind DNA suggest that these two members of the presumed functional replisome may act synergistically on UL9 to effect initiation of HSV-1 DNA replication in vivo.  相似文献   

9.
The herpes simplex virus type 1 (HSV-1) UL37 open reading frame encodes a 120-kDa late (gamma 1), nonstructural protein in infected cells. Recent studies in our laboratory have demonstrated that the UL37 protein interacts in the cytoplasm of infected cells with ICP8, the major HSV-1 DNA-binding protein. As a result of this interaction, the UL37 protein is transported to the nucleus and can be coeluted with ICP8 from single-stranded DNA columns. Pulse-labeling and pulse-chase studies of HSV-1-infected cells with [35S]methionine and 32Pi demonstrated that UL37 was a phosphoprotein which did not have a detectable rate of turnover. The protein was phosphorylated soon after translation and remained phosphorylated throughout the viral replicative cycle. UL37 protein expressed from a vaccinia virus recombinant was also phosphorylated during infection, suggesting that the UL37 protein was phosphorylated by a cellular kinase and that interaction with the ICP8 protein was not a prerequisite for UL37 phosphorylation.  相似文献   

10.
Wilkinson DE  Weller SK 《IUBMB life》2003,55(8):451-458
In many organisms the processes of DNA replication and recombination are closely linked. For instance, in bacterial and eukaryotic systems, replication forks can become stalled or damaged, in many cases leading to the formation of double stranded breaks. Replication restart is an essential mechanism in which the recombination and repair machinery can be used to continue replication after such a catastrophic event. DNA viruses of bacteria such as lambda and T4 also rely heavily on DNA recombination to replicate their genomes and both viruses encode specialized gene products which are required for recombination-dependent replication. In this review, we examine the linkage between replication and recombination in the eukaryotic pathogen, Herpes Simplex Virus Type 1 (HSV-1). The evidence that recombination plays an intrinsic role in HSV-1 DNA replication and the infection process will be reviewed. We have recently demonstrated that HSV-1 encodes two proteins which may be analogous to the lambda phage recombination system, Red(alpha) and beta. The HSV-1 alkaline nuclease, a 5' to 3' exonuclease, and ICP8, a single stranded DNA binding protein, can carry out strand annealing reactions similar to those carried out by the lambda Red system. In addition, evidence suggesting that host recombination proteins may also be important for HSV-1 replication will be reviewed. In summary, it is likely that HSV-1 infection will require both viral and cellular proteins which participate in various pathways of recombination and that recombination-dependent replication is essential for the efficient replication of viral genomes.  相似文献   

11.
Herpes Simplex Virus type 1 (HSV-1) has evolved to disable the cellular DNA damage response kinase, ATR. We have previously shown that HSV-1-infected cells are unable to phosphorylate the ATR substrate Chk1, even under conditions in which replication forks are stalled. Here we report that the HSV-1 single stranded DNA binding protein (ICP8), and the helicase/primase complex (UL8/UL5/UL52) form a nuclear complex in transfected cells that is necessary and sufficient to disable ATR signaling. This complex localizes to sites of DNA damage and colocalizes with ATR/ATRIP and RPA, but under these conditions, the Rad9-Rad1-Hus1 checkpoint clamp (9-1-1) do not. ATR is generally activated by substrates that contain ssDNA adjacent to dsDNA, and previous work from our laboratory has shown that ICP8 and helicase/primase also recognize this substrate. We suggest that these four viral proteins prevent ATR activation by binding to the DNA substrate and obstructing loading of the 9-1-1 checkpoint clamp. Exclusion of 9-1-1 prevents recruitment of TopBP1, the ATR kinase activator, and thus effectively disables ATR signaling. These data provide the first example of viral DNA replication proteins obscuring access to a DNA substrate that would normally trigger a DNA damage response and checkpoint signaling. This unusual mechanism used by HSV suggests that it may be possible to inhibit ATR signaling by preventing recruitment of the 9-1-1 clamp and TopBP1.  相似文献   

12.
13.
Adeno-associated virus (AAV) type 2 is a human parvovirus whose replication is dependent upon cellular proteins as well as functions supplied by helper viruses. The minimal herpes simplex virus type 1 (HSV-1) proteins that support AAV replication in cell culture are the helicase-primase complex of UL5, UL8, and UL52, together with the UL29 gene product ICP8. We show that AAV and HSV-1 replication proteins colocalize at discrete intranuclear sites. Transfections with mutant genes demonstrate that enzymatic functions of the helicase-primase are not essential. The ICP8 protein alone enhances AAV replication in an in vitro assay. We also show localization of the cellular replication protein A (RPA) at AAV centers under a variety of conditions that support replication. In vitro assays demonstrate that the AAV Rep68 and Rep78 proteins interact with the single-stranded DNA-binding proteins (ssDBPs) of Ad (Ad-DBP), HSV-1 (ICP8), and the cell (RPA) and that these proteins enhance binding and nicking of Rep proteins at the origin. These results highlight the importance of intranuclear localization and suggest that Rep interaction with multiple ssDBPs allows AAV to replicate under a diverse set of conditions.  相似文献   

14.
Replication of herpes simplex virus takes place in the cell nucleus and is carried out by a replisome composed of six viral proteins: the UL30-UL42 DNA polymerase, the UL5-UL8-UL52 helicase-primase, and the UL29 single-stranded DNA-binding protein ICP8. The replisome is loaded on origins of replication by the UL9 initiator origin-binding protein. Virus replication is intimately coupled to recombination and repair, often performed by cellular proteins. Here, we review new significant developments: the three-dimensional structures for the DNA polymerase, the polymerase accessory factor, and the single-stranded DNA-binding protein; the reconstitution of a functional replisome in vitro; the elucidation of the mechanism for activation of origins of DNA replication; the identification of cellular proteins actively involved in or responding to viral DNA replication; and the elucidation of requirements for formation of replication foci in the nucleus and effects on protein localization.  相似文献   

15.
Herpes simplex virus-1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery and other enzymes involved in DNA transactions. We recently reported that the HSV-1 DNA polymerase catalytic subunit (UL30) exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities. Moreover, UL30, in conjunction with the viral uracil DNA glycosylase (UL2), cellular apurinic/apyrimidinic endonuclease, and DNA ligase IIIα-XRCC1, performs uracil-initiated base excision repair. Base excision repair is required to maintain genome stability as a means to counter the accumulation of unusual bases and to protect from the loss of DNA bases. Here we show that the HSV-1 UL2 associates with the viral replisome. We identified UL2 as a protein that co-purifies with the DNA polymerase through numerous chromatographic steps, an interaction that was verified by co-immunoprecipitation and direct binding studies. The interaction between UL2 and the DNA polymerase is mediated through the UL30 subunit. Moreover, UL2 co-localizes with UL30 to nuclear viral prereplicative sites. The functional consequence of this interaction is that replication of uracil-containing templates stalls at positions −1 and −2 relative to the template uracil because of the fact that these are converted into non-instructional abasic sites. These findings support the existence of a viral repair complex that may be capable of replication-coupled base excision repair and further highlight the role of DNA repair in the maintenance of the HSV-1 genome.  相似文献   

16.
Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.  相似文献   

17.
UL9, an essential gene for herpes simplex virus type 1 (HSV-1) DNA replication, exhibits helicase and origin DNA binding activities. It has been hypothesized that UL9 binds and unwinds the HSV-1 origin of replication, creating a replication bubble and promoting the assembly of the viral replication machinery; however, direct confirmation of this hypothesis has not been possible. Based on the presence of conserved helicase motifs, UL9 has been classified as a superfamily II helicase. Mutations in conserved residues of the helicase motifs I-VI of UL9 have been isolated, and most of them fail to complement a UL9 null virus in vivo (Martinez R., Shao L., and Weller S. (1992) J. Virol. 66, 6735-6746). In addition, mutants in motifs I, II, and VI were found to be transdominant (Malik, A. K., and Weller, S. K. (1996) J. Virol. 70, 7859-7866). Here we present the characterization of the biochemical properties of the UL9 helicase motif mutants. We report that mutations in motifs I-IV and VI affect the ATPase activity, and all but the motif III mutation completely abolish the helicase activity. In addition, mutations in these motifs do not interfere with UL9 dimerization or the ability of UL9 to bind the HSV-1 origin of replication. Based on the similarity of the helicase motif sequences between UL9 and UvrB, another superfamily II member with helicase-like activity, we were able to map the UL9 mutations on the structure of the UvrB protein and provide an explanation for the observed phenotypes. Our results indicate that the helicase function of UL9 is indispensable for viral replication, supporting the hypothesis that UL9 is essential for unwinding the HSV-1 origin of replication in vivo. Furthermore, the data presented provide insights into the mechanism of transdominance of the UL9 helicase motif mutants.  相似文献   

18.
We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.  相似文献   

19.
Herpes simplex virus type 1 ICP8: helix-destabilizing properties.   总被引:8,自引:4,他引:4       下载免费PDF全文
The major single-stranded DNA-binding protein, ICP8, of herpes simplex virus type 1 (HSV-1) is one of seven virus-encoded polypeptides required for HSV-1 DNA replication. To investigate the role of ICP8 in viral DNA replication, we have examined the interaction of ICP8 with partial DNA duplexes and found that it can displace oligonucleotides annealed to single-stranded M13 DNA. In addition, ICP8 can melt small fragments of fully duplex DNA. Unlike a DNA helicase, ICP8-promoted strand displacement is ATP and Mg2+ independent and exhibits no directionality. It requires saturating amounts of ICP8 and is both efficient and highly cooperative. These properties make ICP8 suitable for a role in DNA replication in which ICP8 destabilizes duplex DNA during origin unwinding and replication fork movement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号