首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Explicit finite element modeling of total knee replacement mechanics   总被引:5,自引:0,他引:5  
Joint kinematics and contact mechanics dictate the success of current total knee replacement (TKR) devices. Efficient computer models present an effective way of evaluating these characteristics. Predicted contact stress and area due to articulations at the tibio-femoral and patello-femoral interfaces indicate potential clinical performance. Previous finite element (FE) knee models have generally been used to predict contact stresses and/or areas during static or quasi-static loading conditions. Explicit dynamic FE analyses have recently been used to efficiently predict TKR kinematics and contact mechanics during dynamic loading conditions. The objective of this study was to develop and experimentally validate an explicit FE TKR model that incorporates tibio-femoral and patello-femoral articulations. For computational efficiency, we developed rigid body analyses that can reasonably reproduce the kinematics, contact pressure distribution, and contact area of a fully deformable system. Results from the deformable model showed that the patello-femoral and tibio-femoral kinematics were in good agreement with experimental knee simulator measurements. Kinematic results from the rigid body analyses were nearly identical to those from the fully deformable model, and the contact pressure and contact area correlation was acceptable given the great reduction in analysis time. Component mesh density studied had little effect on the predicted kinematics, particularly for the patellar component, and small effects on the predicted contact pressure and area. These analyses have shown that, at low computational cost, a force-control dynamic simulation of a gait cycle can yield useful and predictable results.  相似文献   

2.
In vitro pre-clinical testing of total knee replacement (TKR) devices is a necessary step in the evaluation of new implant designs. Whole joint knee simulators, like the Kansas knee simulator (KKS), provide a controlled and repeatable loading environment for comparative evaluation of component designs or surgical alignment under dynamic conditions. Experimental testing, however, is time and cost prohibitive for design-phase evaluation of tens or hundreds of design variations. Experimentally-verified computational models provide an efficient platform for analysis of multiple components, sizes, and alignment conditions. The purpose of the current study was to develop and verify a computational model of a dynamic, whole joint knee simulator. Experimental internal-external and valgus-varus laxity tests, followed by dynamic deep knee bend and gait simulations in the KKS were performed on three cadaveric specimens. Specimen-specific finite element (FE) models of posterior-stabilized TKR were created from magnetic resonance images and CAD geometry. The laxity data was used to optimize mechanical properties of tibiofemoral soft-tissue structures on a specimen-specific basis. Each specimen was subsequently analyzed in a computational model of the experimental KKS, simulating both dynamic activities. The computational model represented all joints and actuators in the experimental setup, including a proportional-integral-derivative (PID) controller to drive quadriceps actuation. The computational model was verified against six degree-of-freedom patellofemoral (PF) and tibiofemoral (TF) kinematics and actuator loading during both deep knee bend and gait activities, with good agreement in trends and magnitudes between model predictions and experimental kinematics; differences were less than 1.8 mm and 2.2° for PF and TF translations and rotations. The whole joint FE simulator described in this study can be applied to investigate a wide range of clinical and research questions.  相似文献   

3.
The need to critically evaluate the efficacy of current total knee replacement (TKR) wear testing methodologies is great. Proposed international standards for TKR wear simulation have been drafted, yet their methods continue to be debated. The "gold standard" to which all TKR wear testing methodologies should be compared is measured in vivo TKR performance in patients. The current study compared patient TKR kinematics from fluoroscopic analysis and simulator TKR kinematics from force-controlled wear testing to quantify similarities in clinical ranges of motion and contact bearing kinematics and to evaluate the proposed ISO force-controlled wear testing methodology. The treadmill walking kinematics from eight well-functioning, 13 month average post-op patients were compared to the 2 million cycle interval walking cycle kinematics from a force-controlled (Instron/Stanmore Knee Joint Simulator, Instron, Canton, MA) knee simulator using identical implant designs (Natural Knee II, Standard Congruent, Zimmer, Warsaw, IN). The in vivo and simulator data showed good agreement in kinematic patterns and ranges of clinical motion. Tribologically the data sets showed similar contact pathway ranges of motion and wear travel distances per cycle. Surgical and simulator alignments of the implant systems were determined to be a contributing factor in observed kinematic differences. This study's statistical findings offer supporting evidence that the simulation of in vivo walking cycle wear kinematics can be accurately reproduced with a force controlled testing methodology.  相似文献   

4.
Clinical studies demonstrate substantial variation in kinematic and functional performance within the total knee replacement (TKR) patient population. Some of this variation is due to differences in implant design, surgical technique and component alignment, while some is due to subject-specific differences in joint loading and anatomy that are inherently present within the population. Combined finite element and probabilistic methods were employed to assess the relative contributions of implant design, surgical, and subject-specific factors to overall tibiofemoral (TF) and patellofemoral (PF) joint mechanics, including kinematics, contact mechanics, joint loads, and ligament and quadriceps force during simulated squat, stance-phase gait and stepdown activities. The most influential design, surgical and subject-specific factors were femoral condyle sagittal plane radii, tibial insert superior-inferior (joint line) position and coronal plane alignment, and vertical hip load, respectively. Design factors were the primary contributors to condylar contact mechanics and TF anterior-posterior kinematics; TF ligament forces were dependent on surgical factors; and joint loads and quadriceps force were dependent on subject-specific factors. Understanding which design and surgical factors are most influential to TKR mechanics during activities of daily living, and how robust implant designs and surgical techniques must be in order to adequately accommodate subject-specific variation, will aid in directing design and surgical decisions towards optimal TKR mechanics for the population as a whole.  相似文献   

5.
Differences between wear-scar features of simulator-tested and retrieved tibial total knee replacement (TKR) liners have been reported. This disagreement may result from differences between in vivo kinematic profiles and those defined by the International Organization for Standardization (ISO). The purpose of this study was to determine the knee kinematics of a TKR subject group during level walking and compare them with the motion profiles defined by the ISO standard for a displacement-controlled knee wear testing simulator. Twenty-nine patients with a posterior cruciate ligament-retaining TKR design were gait tested using the point cluster technique to obtain flexion–extension (FE) rotation, anterior–posterior (AP) translation and internal–external (IE) rotation knee motions during a complete cycle of level walking. Relative ranges of motion and timing of key points within the in vivo motion data were compared against the same ranges and same key points from the input profiles of the displacement-controlled wear testing standard ISO14243-3. The subjects exhibited a FE pattern similar to ISO, with an insignificant difference in range of FE rotation from midstance to terminal stance. However, the subjects had a significantly higher range of knee flexion from terminal stance into swing. The subjects also exhibited a phase delay for the entire gait cycle. For AP translation, the standard profile had statistically significant lower magnitudes than seen in vivo. Opposite pattern of AP motion was also apparent from midstance and swing. Similarly, ISO specified a smaller IE total range of rotation with a motion pattern in complete opposition to that seen in vivo. In conclusion, significant differences were found in both the magnitudes and pattern of in vivo motion compared with ISO.  相似文献   

6.
Pre-clinical experimental wear testing of total knee replacement (TKR) components is an invaluable tool for evaluating new implant designs and materials. However, wear testing can be a lengthy and expensive process, and hence parametric studies evaluating the effects of geometric, loading, or alignment perturbations may at times be cost-prohibitive. The objectives of this study were to develop an adaptive FE method capable of simulating wear of a polyethylene tibial insert and to compare predicted kinematics, weight loss due to wear, and wear depth contours to results from a force-controlled experimental knee simulator. Finite element-based computational wear predictions were performed to 5 million gait cycles using both force- and displacement-controlled inputs. The displacement-controlled inputs, by accurately matching the experimental tibiofemoral motion, provided an evaluation of the simple wear theory. The force-controlled inputs provided an evaluation of the overall numerical method by simultaneously predicting both kinematics and wear. Analysis of the predicted wear convergence behavior indicated that 10 iterations, each representing 500,000 gait cycles, were required to achieve numerical accuracy. Using a wear factor estimated from the literature, the predicted kinematics, polyethylene wear contours, and weight loss were in reasonable agreement with the experimental data, particularly for the stance phase of gait. Although further development of the simplified wear theory is important, the initial predictions are encouraging for future use in design phase implant evaluation. In contrast to the experimental testing which occurred over approximately 2 months, computational wear predictions required only 2h.  相似文献   

7.
Rigid body total knee replacement (TKR) models with tibiofemoral contact based on elastic foundation (EF) theory utilize simple contact pressure-surface overclosure relationships to estimate joint mechanics, and require significantly less computational time than corresponding deformable finite element (FE) methods. However, potential differences in predicted kinematics between these representations are currently not well understood, and it is unclear if the estimates of contact area and pressure are acceptable. Therefore, the objectives of the current study were to develop rigid EF and deformable FE models of tibiofemoral contact, and to compare predicted kinematics and contact mechanics from both representations during gait loading conditions with three different implant designs. Linear and nonlinear contact pressure-surface overclosure relationships based on polyethylene material properties were developed using EF theory. All other variables being equal, rigid body FE models accurately estimated kinematics predicted by fully deformable FE models and required only 2% of the analysis time. As expected, the linear EF contact model sufficiently approximated trends for peak contact pressures, but overestimated the deformable results by up to 30%. The nonlinear EF contact model more accurately reproduced trends and magnitudes of the deformable analysis, with maximum differences of approximately 15% at the peak pressures during the gait cycle. All contact area predictions agreed in trend and magnitude. Using rigid models, edge-loading conditions resulted in substantial overestimation of peak pressure. Optimal nonlinear EF contact relationships were developed for specific TKR designs for use in parametric or repetitive analyses where computational time is paramount. The explicit FE analysis method utilized here provides a unique approach in that both rigid and deformable analyses can be run from the same input file, thus enabling simple selection of the most appropriate representation for the analysis of interest.  相似文献   

8.
Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implanted knee to instantaneously predict joint mechanics in an efficient manner. Finite element methods were combined with Latin hypercube sampling and regression analyses to produce modeling equations relating nine implant design and six surgical alignment parameters to tibiofemoral (TF) joint mechanics outcomes during a deep knee bend. A SFM was developed and TF contact mechanics, kinematics, and soft tissue loads were instantaneously predicted from the model. Average normalized root-mean-square error predictions were between 2.79% and 9.42%, depending on the number of parameters included in the model. The statistical shape-function model generated instantaneous joint mechanics predictions using a maximum of 130 training simulations, making it ideally suited for integration into a patient-specific design and alignment optimization pipeline. Such a tool may be used to optimize kinematic function to achieve more natural motion or minimize implant wear, and may aid the engineering and clinical communities in improving patient satisfaction and surgical outcomes.  相似文献   

9.
Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage–bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion–extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial–lateral translation and all rotations except flexion–extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions.  相似文献   

10.
Debris-induced osteolysis due to surface wear of ultra high molecular weight polyethylene (UHMWPE) bearings is a potential long-term failure mechanism of total knee replacements (TKR). This study investigated the effect of prosthesis design, kinematics and bearing material on the wear of UHMWPE bearings using a physiological knee simulator. The use of a curved fixed bearing design with stabilised polyethylene bearings reduced wear in comparison to more flat-on-flat components which were sterilised by gamma irradiation in air. Medium levels of crosslinking further improved the wear resistance of fixed bearing TKR due to resistance to strain softening when subjected to multidirectional motion at the femoral-insert articulating interface. Backside motion was shown to be a contributing factor to the overall rate of UHMWPE wear in fixed bearing components. Wear of fixed bearing prostheses was reduced significantly when anterior-posterior displacement and internal-external rotation kinematics were reduced due to decreased cross shear on the articulating surface and a reduction in AP displacement. Rotating platform mobile bearing prostheses exhibited reduced wear rates in comparison to fixed bearing components in these simulator studies due to redistribution of knee motion to two articulating interfaces with more linear motions at each interface. This was observed in two rotating platform designs with different UHMWPE bearing materials. In knee simulator studies, wear of TKR bearings was dependent on kinematics at the articulating surfaces and the prosthesis design, as well as the type of material.  相似文献   

11.
Many aspects of biomechanics are variable in nature, including patient geometry, joint mechanics, implant alignment and clinical outcomes. Probabilistic methods have been applied in computational models to predict distributions of performance given uncertain or variable parameters. Sensitivity analysis is commonly used in conjunction with probabilistic methods to identify the parameters that most significantly affect the performance outcome; however, it does not consider coupled relationships for multiple output measures. Principal component analysis (PCA) has been applied to characterize common modes of variation in shape and kinematics. In this study, a novel, combined probabilistic and PCA approach was developed to characterize relationships between multiple input parameters and output measures. To demonstrate the benefits of the approach, it was applied to implanted patellofemoral (PF) mechanics to characterize relationships between femoral and patellar component alignment and loading and the resulting joint mechanics. Prior studies assessing PF sensitivity have performed individual perturbation of alignment parameters. However, the probabilistic and PCA approach enabled a more holistic evaluation of sensitivity, including identification of combinations of alignment parameters that most significantly contributed to kinematic and contact mechanics outcomes throughout the flexion cycle, and the predictive capability to estimate joint mechanics based on alignment conditions without requiring additional analysis. The approach showed comparable results for Monte Carlo sampling with 500 trials and the more efficient Latin Hypercube sampling with 50 trials. The probabilistic and PCA approach has broad applicability to biomechanical analysis and can provide insight into the interdependencies between implant design, alignment and the resulting mechanics.  相似文献   

12.
In this work,a friction and wear simulator was used to reproduce the Anterior-Posterior (AP) sliding and the Flexion-Extension (FE) rotation generated in the knee joint during human gait cycle.We chose to simplify the contact geometry between the Total Knee Arthroplasty (TKA) femoral component and tibial insert.A 304L stainless steel cylinder which replaces the femoral component was loaded onto a flat High Density Polyethylene (HDPE) block which replaces the tibial insert.The tribological behavior of the considered contact was analyzed by tracking the number of cycles,the friction coefficient,the roughness of the wear track on HDPE,the HDPE weight loss and the damage mechanisms.The friction coefficient shows a gradual increase with the number of cycles for both AP and FE kinematics.The evolution of friction coefficient with the number of cycles is not affected by the value of the imposed normal load in the case of AP sliding.For the FE rotation,decreased friction coefficient is obtained when the imposed normal load increases.For both considered AP and FE kinematics,the roughness of the wear track on the HDPE is not affected by the imposed normal load.It shows a progressive decrease when the number of cycles increases.The wear of HDPE obeys the Archard law and the wear coefficient increases with the normal force.For a given value of normal load,the obtained wear coefficient for the AP sliding is larger than that obtained for FE rotation.A predominant adhesive wear mechanism was identified for both AP and FE kinematics.Under the same normal load,damage development in terms of plastic deformation,micro-cracking and debonding is more pronounced for the AP sliding if compared with the FE rotation.For a given kinematics,the damage severity increases with the normal load.This finding is in good agreement with the predicted values of the wear coefficient according to the Archard law.  相似文献   

13.
Verified computational models represent an efficient method for studying the relationship between articular geometry, soft-tissue constraint, and patellofemoral (PF) mechanics. The current study was performed to evaluate an explicit finite element (FE) modeling approach for predicting PF kinematics in the natural and implanted knee. Experimental three-dimensional kinematic data were collected on four healthy cadaver specimens in their natural state and after total knee replacement in the Kansas knee simulator during a simulated deep knee bend activity. Specimen-specific FE models were created from medical images and CAD implant geometry, and included soft-tissue structures representing medial–lateral PF ligaments and the quadriceps tendon. Measured quadriceps loads and prescribed tibiofemoral kinematics were used to predict dynamic kinematics of an isolated PF joint between 10° and 110° femoral flexion. Model sensitivity analyses were performed to determine the effect of rigid or deformable patellar representations and perturbed PF ligament mechanical properties (pre-tension and stiffness) on model predictions and computational efficiency.Predicted PF kinematics from the deformable analyses showed average root mean square (RMS) differences for the natural and implanted states of less than 3.1° and 1.7 mm for all rotations and translations. Kinematic predictions with rigid bodies increased average RMS values slightly to 3.7° and 1.9 mm with a five-fold decrease in computational time. Two-fold increases and decreases in PF ligament initial strain and linear stiffness were found to most adversely affect kinematic predictions for flexion, internal–external tilt and inferior–superior translation in both natural and implanted states. The verified models could be used to further investigate the effects of component alignment or soft-tissue variability on natural and implant PF mechanics.  相似文献   

14.
The experimental evaluation of any total knee replacement (TKR) design should include the pre-implantation quantification of its mechanical performance during tests that simulate the common activities of daily living. To date, few dynamic TKR simulation studies have been conducted before implantation. Once in vivo, the accurate and reproducible assessment of TKR design mechanics is exceedingly difficult, with the secondary variables of the patient and the surgical technique hindering research. The current study utilizes a 6-degree-of-freedom force-controlled knee simulator to quantify the effect of TKR design alone on TKR mechanics during a simulated walking cycle. Results show that all eight TKR designs tested elicited statistically different measures of tibial/femoral kinematics, simulated soft tissue loading, and implant geometric restraint loading during an identical simulated gait cycle, and that these differences were a direct result of TKR design alone. Maximum ranges of tibial kinematics over the eight designs tested were from 0.8mm anterior to 6.4mm posterior tibial displacement, and 14.1 degrees internal to 6.0 degrees external tibial rotation during the walking cycle. Soft tissue and implant reaction forces ranged from 106 and 222N anteriorly to 19 and 127N posteriorly, and from 1.6 and 1.8Nm internally to 3.5 and 5.9Nm externally, respectively. These measures provide valuable experimental insight into the effect of TKR design alone on simulated in vivo TKR kinematics, bone interface loading and soft tissue loading. Future studies utilizing this methodology should investigate the effect of experimentally controlled variations in surgical and patient factors on TKR performance during simulated dynamic activity.  相似文献   

15.
Valgus or varus malpositioning of the tibial component of a total knee implant may cause increased propensity for loosening or implant wear and eventually may lead to revision surgery. The aim of this study was to determine the effect of valgus/varus malalignment on tibio-femoral mechanics during surgical trial reduction and simulated gait loading. In seven cadaver legs, posterior cruciate sparing total knee replacements were implanted and tibial inserts representing a neutral alignment and 3 degrees and 5 degrees varus and valgus alignments were sequentially inserted. Each knee with each insert was loaded in a manner representative of a trial reduction performed during knee surgery and loaded in a physiological knee simulator. Simulated gait performed on the simulator demonstrated that internal/external and adduction/abduction rotations showed statistical changes with some of the angled inserts at different points in the walking cycle. Neither medial/lateral nor anterior/posterior translations changed statistically during simulated walking. The pressure distribution and total load in the medial and lateral compartments of the tibial component changed significantly with as little as a 3 degrees variation in angulation when loaded in a manner representative of a trial reduction or with a knee simulator. These results support the need for precise surgical reconstruction of the mechanical axis of the knee and proper alignment of the tibial component. These results further demonstrate that tibial contact pressures measured during a trial reduction method may be predictive of contact mechanics at the higher loading seen in the knee simulator.  相似文献   

16.
Experimental simulator studies are frequently performed to evaluate wear behavior in total knee replacement. It is vital that the simulation conditions match the physiological situation as closely as possible. To date, few experimental wear studies have examined the effects of joint laxity on wear and joint kinematics and the absence of the anterior cruciate ligament has not been sufficiently taken into account in simulator wear studies.The aim of this study was to investigate different ligament and soft tissue models with respect to wear and kinematics.A virtual soft tissue control system was used to simulate different motion restraints in a force-controlled knee wear simulator.The application of more realistic and sophisticated ligament models that considered the absence of anterior cruciate ligament lead to a significant increase in polyethylene wear (p=0.02) and joint kinematics (p<0.01). We recommend the use of more complex ligament models to appropriately simulate the function of the human knee joint and to evaluate the wear behavior of total knee replacements. A feasible simulation model is presented.  相似文献   

17.
Malalignment is the main cause of tibial component loosening. Implants that migrate rapidly in the first two post-operative years are likely to present aseptic loosening. It has been suggested that cancellous bone stresses can be correlated with tibial component migration. A recent study has shown that patient-specific finite element (FE) models have the power to predict the short-term behavior of tibial trays. The stresses generated within the implanted tibia are dependent on the kinematics of the joint; however, previous studies have ignored the kinematics and only applied static loads. Using explicit FE, it is possible to simultaneously predict the kinematics and stresses during a gait cycle. The aim of this study was to examine the cancellous bone strains during the stance phase of the gait cycle, for varying degrees of varus/valgus eccentric loading using explicit FE. A patient-specific model of a proximal tibia was created from CT scan images, including heterogeneous bone properties. The proximal tibia was implanted with a commercial total knee replacement (TKR) model. The stance phase of gait was simulated and the applied loads and boundary conditions were based on those used for the Stanmore knee simulator. Eccentric loading was simulated. As well as examining the tibial bone strains (minimum and maximum principal strain), the kinematics of the bone-implant construct are also reported. The maximum anterior-posterior displacements and internal-external rotations were produced by the model with 20 mm offset. The peak minimum and maximum principal strain values increased as the load was shifted laterally, reaching a maximum magnitude for -20 mm offset. This suggests that when in varus, the load transferred to the bone is shifted medially, and as the bone supporting this load is stiffer, the resulting peak bone strains are lower than when the load is shifted laterally (valgus). For this particular patient, the TKR design analyzed produced the highest cancellous bone strains when in valgus. This study has provided an insight in the variations produced in bone strain distribution when the axial load is applied eccentrically. To the authors' knowledge, this is the first time that the bone strain distribution of a proximal implanted tibia has been examined, also accounting for the kinematics of the tibio-femoral joint as part of the simulation. This approach gives greater insight into the overall performance of TKR.  相似文献   

18.
Experimental wear testing is an essential step in the evaluation of total knee replacement (TKR) design. Unfortunately, experiments can be prohibitively expensive and time consuming, which has made computational wear simulation a more desirable alternative for screening designs. While previous attempts have demonstrated positive results, few models have fully incorporated the affect of strain hardening (or cross shear), or tested the model under more than one loading condition. The objective of this study was to develop and evaluate the performance of a new holistic TKR damage model, capable of predicting damage caused by wear, including the effects of strain hardening and creep. For the first time, a frictional work-based damage model was compared against multiple sets of experimental TKR wear testing data using different input kinematics. The wear model was tuned using experimental measurements and was then able to accurately predict the volumetric polyethylene wear volume during experiments with different kinematic inputs. The size and shape of the damage patch on the surface of the polyethylene inserts were also accurately predicted under multiple input kinematics. The ability of this model to predict implant damage under multiple loading profiles by accounting for strain hardening makes it ideal for screening new implant designs, since implant kinematics are largely a function of the shape of the components.  相似文献   

19.
Few in-vitro studies have investigated changes in kinematics caused by total knee replacement (TKR) implantation. The advent of surgical navigation systems allows implant position to be measured accurately and the effects of alteration of TKR position and alignment investigated. A test rig and protocol were developed to compare the kinematics of TKR-implanted knees for different femoral component positions. The TKR was implanted and the component positions documented using a navigation system. The quadriceps was tensed and the knees were flexed and extended manually. Torques and drawer forces were applied to the tibia during knee flexion–extension, while recording the kinematics with the navigation system. The implant was removed and replaced on an intramedullary fixation that allowed proximal–distal, and internal–external rotation of the femoral component without conducting a repeated arthrotomy on the knee. The implant was repositioned using the navigation system to reproduce the previously achieved normally navigated position and the kinematics were recorded again. The recorded kinematics of the knee were not significantly different between both normal implantation and intramedullary remounting for tibial internal–external rotation, varus–valgus angulation, or posterior drawer, at any angle of knee flexion examined. Anterior drawer was increased approximately 2.5 mm across the range 20–35° knee flexion (p<0.05), but was otherwise not significantly different. This method of navigating implant components and of moving them within the closed knee (thus avoiding artefactual effects of repeated soft tissue manipulations) can now be used to quantify the effect on kinematics of alteration of the position of the femoral component.  相似文献   

20.
Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r2), was found in the FE-MS model (RMSE = 177.2 N, r2 = 0.90) when compared with the MS model (RMSE = 224.1 N, r2 = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号