首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoglucomutase (PGM, EC 2.7.5.1) is one of the enzymes constituting the carbohydrate synthesis pathway in higher plants. It catalyzes the reversible conversion of glucose 6-phosphate (Glc6P) to glucose 1-phosphate (Glc1P). Previously, metabolic turnover analysis using (13)CO(2) in tobacco leaves demonstrated that conversion of Glc6P to Glc1P may limit carbon flow into carbohydrate synthesis. In order to assess the effects of PGM, Arabidopsis thaliana cytosolic or plastidial PGM was expressed under the control of cauliflower mosaic virus 35S promoter in tobacco plants (Nicotiana tabacum cv. Xanthi) and phenotypic analysis was performed. The transgenic plants expressing Arabidopsis plastidial PGM showed 3.5-8.2-fold higher PGM activity than that of wild-type, and leaf starch and sucrose contents increased 2.3-3.2-fold and 1.3-1.4-fold, respectively over wild-type levels. In vivo(13)C-labeling experiments indicated that photosynthetically fixed carbon in the transgenic plants could be converted faster to Glc1P and adenosine 5'-diphosphate glucose than in wild-type, suggesting that elevation of plastidial PGM activity should accelerate conversion of Glc6P to Glc1P in chloroplasts and increase carbon flow into starch. On the other hand, transgenic plants expressing Arabidopsis cytosolic PGM showed a 2.1-3.4-fold increase in PGM activity over wild-type and a decrease of leaf starch content, but no change in sucrose content. These results suggest that plastidial PGM limits photosynthetic carbon flow into starch.  相似文献   

2.
Cytosolic phosphoglucomutase (cPGM) interconverts glucose-6-phosphate and glucose-1-phosphate and is a key enzyme of central metabolism. In this study, we show that Arabidopsis (Arabidopsis thaliana) has two cPGM genes (PGM2 and PGM3) encoding proteins with high sequence similarity and redundant functions. Whereas pgm2 and pgm3 single mutants were undistinguishable from the wild type, loss of both PGM2 and PGM3 severely impaired male and female gametophyte function. Double mutant pollen completed development but failed to germinate. Double mutant ovules also developed normally, but approximately half remained unfertilized 2 d after pollination. We attribute these phenotypes to an inability to effectively distribute carbohydrate from imported or stored substrates (e.g. sucrose) into the major biosynthetic (e.g. cell wall biosynthesis) and respiratory pathways (e.g. glycolysis and the oxidative pentose phosphate pathway). Disturbing these pathways is expected to have dramatic consequences for germinating pollen grains, which have high metabolic and biosynthetic activities. We propose that residual cPGM mRNA or protein derived from the diploid mother plant is sufficient to enable double mutant female gametophytes to attain maturity and for some to be fertilized. Mature plants possessing a single cPGM allele had a major reduction in cPGM activity. However, photosynthetic metabolism and growth were normal, suggesting that under standard laboratory conditions cPGM activity provided from one wild-type allele is sufficient to mediate the photosynthetic and respiratory fluxes in leaves.  相似文献   

3.
The aim of this work was to evaluate the extent to which plastidial phosphoglucomutase (PGM) activity controls starch synthesis within potato (Solanum tuberosum L. cv. Desirée) tubers. The reduction in the activity of plastidial PGM led to both a correlative reduction in starch accumulation and an increased sucrose accumulation. The control coefficient of plastidial PGM on the accumulation of starch was estimated to approximate 0.24. The fluxes of carbohydrate metabolism were measured by investigating the metabolism of [U-14C]glucose in tuber discs from wild-type and transgenic plants. In tuber discs the control coefficient of plastidial PGM over starch synthesis was estimated as 0.36, indicating that this enzyme exerts considerable control over starch synthesis within the potato tuber.  相似文献   

4.
Evidence from a number of plant tissues suggests that phosphoglucomutase (PGM) is present in both the cytosol and the plastid. The cytosolic and plastidic isoforms of PGM have been partially purified from wheat endosperm (Triticum aestivum L. cv. Axona). Both isoforms required glucose 1,6-bisphosphate for their activity with K(a) values of 4.5 micro M and 3.8 micro M for cytosolic and plastidic isoforms, respectively, and followed normal Michaelis-Menten kinetics with glucose 1-phosphate as the substrate with K(m) values of 0.1 mM and 0.12 mM for the cytosolic and plastidic isoforms, respectively. A cDNA clone was isolated from wheat endosperm that encodes the cytosolic isoform of PGM. The deduced amino acid sequence shows significant homology to PGMs from eukaryotic and prokaryotic sources. PGM activity was measured in whole cell extracts and in amyloplasts isolated during the development of wheat endosperm. Results indicate an approximate 80% reduction in measurable activity of plastidial and cytosolic PGM between 8 d and 30 d post-anthesis. Northern analysis showed a reduction in cytosolic PGM mRNA accumulation during the same period of development. The implications of the changes in PGM activity during the synthesis of starch in developing endosperm are discussed.  相似文献   

5.
The cytosolic pools of glucose-1-phosphate (Glc-1-P) and glucose-6-phosphate are essential intermediates in several biosynthetic paths, including the formation of sucrose and cell wall constituents, and they are also linked to the cytosolic starch-related heteroglycans. In this work, structural features and biochemical properties of starch-related heteroglycans were analyzed as affected by the cytosolic glucose monophosphate metabolism using both source and sink organs from wild-type and various transgenic potato (Solanum tuberosum) plants. In leaves, increased levels of the cytosolic phosphoglucomutase (cPGM) did affect the cytosolic heteroglycans, as both the glucosyl content and the size distribution were diminished. By contrast, underexpression of cPGM resulted in an unchanged size distribution and an unaltered or even increased glucosyl content of the heteroglycans. Heteroglycans prepared from potato tubers were found to be similar to those from leaves but were not significantly affected by the level of cPGM activity. However, external glucose or Glc-1-P exerted entirely different effects on the cytosolic heteroglycans when added to tuber discs. Glucose was directed mainly toward starch and cell wall material, but incorporation into the constituents of the cytosolic heteroglycans was very low and roughly reflected the relative monomeric abundance. By contrast, Glc-1-P was selectively taken up by the tuber discs and resulted in a fast increase in the glucosyl content of the heteroglycans that quantitatively reflected the level of the cytosolic phosphorylase activity. Based on (14)C labeling experiments, we propose that in the cytosol, glucose and Glc-1-P are metabolized by largely separated paths.  相似文献   

6.
The aim of this work was to establish whether plastidial phosphoglucomutase is involved in the starch biosynthetic pathway of potato tubers and thereby to determine the form in which carbon is imported into the potato amyloplast. For this purpose, we cloned the plastidial isoform of potato PGM (StpPGM), and using an antisense approach generated transgenic potato plants that exhibited decreased expression of the StpPGM gene and contained significantly reduced total phosphoglucomutase activity. We confirmed that this loss in activity was due specifically to a reduction in plastidial PGM activity. Potato lines with decreased activities of plastidial PGM exhibited no major changes in either whole-plant or tuber morphology. However, tubers from these lines exhibited a dramatic (up to 40%) decrease in the accumulation of starch, and significant increases in the levels of sucrose and hexose phosphates. As tubers from these lines exhibited no changes in the maximal catalytic activities of other key enzymes of carbohydrate metabolism, we conclude that plastidial PGM forms part of the starch biosynthetic pathway of the potato tuber, and that glucose-6-phosphate is the major precursor taken up by amyloplasts in order to support starch synthesis.  相似文献   

7.
Plastidial phosphoglucomutase (PGM) plays an important role in starch synthesis and degradation. Nonetheless, the impact of enhanced plastidial PGM activity on metabolism in photosynthetic tissue is yet to be elucidated. In this study, we generated transplastomic tobacco plants overproducing Arabidopsis thaliana plastidial PGM (AtptPGM) in chloroplasts and analyzed the consequent metabolic and physiological parameters in the transplastomic plants. AtptPGM accumulated in the chloroplasts to up to 16% of total soluble protein in the leaves. PGM activity in leaves increased 100-fold relative to that of wild-type plants. The transplastomic plants were phenotypically indistinguishable in their growth rates, photosynthetic activities, and starch synthesis from wild-type plants, but hexose partitioning in the light period was dramatically different. Furthermore, alteration of extracellular invertase activity was observed in the lower leaves of the transplastomic plants. These observations suggest that high-level expression of plastidial PGM alters hexose partitioning in light periods via modification of extracellular invertase activity.  相似文献   

8.
The aim of this work was to investigate the role of cytosolic phosphoglucomutase (PGM; EC 5.4.2.2) in the regulation of carbohydrate metabolism. Many in vitro studies have indicated that PGM plays a central role in carbohydrate metabolism; however, until now the importance of this enzyme in plants has not been subject to reverse-genetics investigations. With this intention we cloned the cytosolic isoform of potato PGM (StcPGM) and expressed this in the antisense orientation under the control of the CaMV 35 S promoter in potato plants. We confirmed that these plants contained reduced total PGM activity and that loss in activity was due specifically to a reduction in cytosolic PGM activity. These plants were characterised by a severe phenotype: stunted aerial growth combined with limited root growth and a reduced tuber yield. Analysis of the metabolism of these lines revealed that leaves of these plants were inhibited in sucrose synthesis whereas the tubers exhibited decreased levels of sucrose and starch as well as decreased levels of glycolytic intermediates but possessed unaltered levels of adenylates. Furthermore, a broader metabolite screen utilising GC-MS profiling revealed that these lines contained altered levels of several intermediates of the TCA cycle and of amino acids. In summary, we conclude that cytosolic PGM plays a crucial role in the sucrose synthetic pathway within the leaf and in starch accumulation within the tuber, and as such is important in the maintenance of sink-source relationships.  相似文献   

9.
10.
Screening of transposon-associated mutants of Arabidopsis thaliana for altered starch metabolism resulted in the isolation of a mutant that did not accumulate starch in any tissue or at any developmental stage (starch-free mutant, stf1). Allelism tests with known mutants showed that stf1 represents a new mutant allele of the plastid isoform of the enzyme phosphoglucomutase (PGMp). The mutation was mapped to chromosome 5. An Arabidopsis EST that showed significant homology to the cytosolic isoform of phosphoglucomutase (PGM) from maize was able to complement the mutant phenotype. The Arabidopsis EST was transcribed and translated in vitro and the protein product was efficiently imported into isolated chloroplasts and processed to its mature form. The lack of starch biosynthesis in stf1 is accompanied by the accumulation of soluble sugars. The rate of CO2 assimilation measured in individual leaves was substantially diminished only under conditions of high CO2 and low O2. Remarkably, stf1 exhibits an increase rather than a decrease in total leaf PGM activity, suggesting an induction of the cytosolic isoform(s) in the mutant. The substrate for PGM, glucose 6-phosphate, accumulated in stf1 during the day, resulting in 10-fold higher content than in the wild type at the end of the photoperiod. Received: 4 January 2000 / Accepted: 21 March 2000  相似文献   

11.
We have previously described the generation of transgenic potato ( Solanum tuberosum L. cv. Desiree) lines expressing the S. tuberosum plastidial phosphoglucomutase ( StpPGM) gene in the antisense orientation under the control of the 35S promoter and characterised heterotrophic metabolism in these lines [E. Tauberger et al. (2000) Plant J 23:43-53]. The aim of the current work was to examine the role of plastidial phosphoglucomutase (pPGM, EC 5.4.2.2) in photosynthetic carbon partitioning. Here we characterise the metabolism of leaves of the same lines and show that reducing the activity of this enzyme has profound effects on carbon partitioning, characterised by a strong (up to 50%) reduction in the rate of starch accumulation accompanied by a minor reduction in the rate of sucrose accumulation. Gas-exchange and (14)CO(2)-feeding experiments revealed that the transgenic lines exhibited a decreased rate of photosynthesis and a corresponding reduced assimilation of radiolabel into starch, even in lines exhibiting only a minor decrease in pPGM activity. In illuminated leaves, decreasing the amount of pPGM resulted in decreased amounts of triose-phosphates, hexose-phosphates and inorganic phosphate without changes in the level of 3-phosphoglycerate. Most importantly, the deduced ratio of phosphoesters to inorganic phosphate increased, indicating the likelihood that photosynthesis was phosphate-limited in these lines. Determination of a more complete metabolic profile of leaf material from these lines revealed a large number of changes in the levels of amino and organic acids, consistent with an inhibition of triose-phosphate export from the chloroplast, but little change in the energy status of the transformants. We discuss the implications of these changes with respect to both consequences of inhibiting starch synthesis and of inhibiting photosynthesis, and conclude that a high activity of pPGM is required both to prevent phosphate limitation of photosynthesis and for co-ordination of plastidially and cytosolically compartmented photosynthetic metabolism.  相似文献   

12.
Starch metabolism in developing embryos of oilseed rape   总被引:7,自引:0,他引:7  
The aim of this work was to characterise the metabolism of starch in developing embryos of oilseed rape (Brassica napus L. cv. Topaz). The accumulation of starch in embryos in siliques which were darkened or had been exposed to the light was similar, suggesting that the starch is synthesised from imported sucrose rather than via photosynthesis in the embryo. Starch content and the activities of plastidial enzymes required for synthesis of starch from glucose 6-phosphate (Glc6P) both peaked during the early-mid stage of cotyledon development (i.e. during the early part of oil accumulation) and then declined. The mature embryo contained almost no starch. The starch-degrading enzymes α-(EC 3.2.1.1) and β-amylase (EC 3.2.1.2) and phosphorylase (EC 2.4.1.1) were present throughout development. Most of the activity of these three enzymes was extraplastidial and therefore unlikely to be involved in starch degradation, but there were distinct plastidial and extraplastidial isoforms of all three enzymes. Activity gels indicated that distinct plastidial isoforms increase during the change from net synthesis to net degradation of starch. Plastids isolated from embryos at stages both before and after the maximum starch content could convert Glc6P to starch although the rate was lower at the later stage. The results are consistent with the idea that starch synthesis and degradation occur simultaneously during embryo development. The possible roles of transient starch accumulation during embryo development are discussed. Received: 15 May 1997 / Accepted: 30 May 1997  相似文献   

13.
Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-1?C]glucose 1-phosphate, [U-1?C]sucrose, [U-1?C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-1?C]sucrose plus unlabelled equimolar glucose 1-phosphate. C1?-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 1?C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-1?C]glucose 1-phosphate or adenosine-[U-1?C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C1?C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.  相似文献   

14.
The prevailing model on transitory starch biosynthesis in source leaves assumes that the plastidial ADPglucose (ADPG) pyrophosphorylase (AGP) is the sole enzyme catalyzing the synthesis of the starch precursor molecule, ADPG. However, recent investigations have shown that ADPG linked to starch biosynthesis accumulates outside the chloroplast, presumably in the cytosol. This finding is consistent with the occurrence of an 'alternative' gluconeogenic pathway wherein sucrose synthase (SuSy) is involved in the production of ADPG in the cytosol, whereas both plastidial phosphoglucomutase (pPGM) and AGP play a prime role in the scavenging of starch breakdown products. To test this hypothesis, we have compared the ADPG content in both Arabidopsis and potato wild-type (WT) leaves with those of the starch-deficient mutants with reduced pPGM and AGP. These analyses provided evidence against the 'classical' model of starch biosynthesis, since ADPG levels in all the starch-deficient lines were normal compared with WT plants. Whether or not SuSy is involved in the synthesis of ADPG accumulating in leaves was tested by characterizing both SuSy-overexpressing and SuSy-antisensed transgenic leaves. Importantly, SuSy-overexpressing leaves exhibited a large increase of both ADPG and starch levels compared with WT leaves, whereas SuSy-antisensed leaves accumulated low amounts of both ADPG and starch. These findings show that (i) ADPG produced by SuSy is linked to starch biosynthesis; (ii) SuSy exerts a strong control on the starch biosynthetic process; and (iii) SuSy, but not AGP, controls the production of ADPG accumulating in source leaves.  相似文献   

15.
To study the role of the plastidial alpha-glucan phosphorylase in starch metabolism in the leaves of Arabidopsis, two independent mutant lines containing T-DNA insertions within the phosphorylase gene were identified. Both insertions eliminate the activity of the plastidial alpha-glucan phosphorylase. Measurement of other enzymes of starch metabolism reveals only minor changes compared with the wild type. The loss of plastidial alpha-glucan phosphorylase does not cause a significant change in the total accumulation of starch during the day or its remobilization at night. Starch structure and composition are unaltered. However, mutant plants display lesions on their leaves that are not seen on wild-type plants, and mesophyll cells bordering the lesions accumulate high levels of starch. Lesion formation is abolished by growing plants under 100% humidity in still air, but subsequent transfer to circulating air with lower humidity causes extensive wilting in the mutant leaves. Wilted sectors die, causing large lesions that are bordered by starch-accumulating cells. Similar lesions are caused by the application of acute salt stress to mature plants. We conclude that plastidial phosphorylase is not required for the degradation of starch, but that it plays a role in the capacity of the leaf lamina to endure a transient water deficit.  相似文献   

16.
Whole‐plant carbon balance comprises diurnal fluctuations of photosynthetic carbon gain and respiratory losses, as well as partitioning of assimilates between phototrophic and heterotrophic organs. Because it is difficult to access, the root system is frequently neglected in growth models, or its metabolism is rated based on generalizations from other organs. Here, whole‐plant cuvettes were used for investigating total‐plant carbon exchange with the environment over full diurnal cycles. Dynamics of primary metabolism and diurnally resolved phloem exudation profiles, as proxy of assimilate transport, were combined to obtain a full picture of resource allocation. This uncovered a strong impact of periodicity of inter‐organ transport on the efficiency of carbon gain. While a sinusoidal fluctuation of the transport rate, with minor diel deflections, minimized respiratory losses in Arabidopsis wild‐type plants, triangular or rectangular patterns of transport, found in mutants defective in either starch or sucrose metabolism, increased root respiration at the end or beginning of the day, respectively. Power spectral density and cross‐correlation analysis revealed that only the rate of starch synthesis was strictly correlated to the rate of net photosynthesis in wild‐type, while in a sucrose‐phosphate synthase mutant (spsa1), this applied also to carboxylate synthesis, serving as an alternative carbon pool. In the starchless mutant of plastidial phospho‐gluco mutase (pgm), none of these rates, but concentrations of sucrose and glucose in the root, followed the pattern of photosynthesis, indicating direct transduction of shoot sugar levels to the root. The results demonstrate that starch metabolism alone is insufficient to buffer diurnal fluctuations of carbon exchange.  相似文献   

17.
18.
19.
Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis   总被引:1,自引:0,他引:1  
In green tissues of plants under illumination, photosynthesis is the primary source of reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is utilized in reductive reactions such as carbon fixation and nitrogen assimilation. In non-photosynthetic tissues or under non-photosynthetic conditions, the oxidative pentose phosphate pathway contributes to basic metabolism as one of the major sources of NADPH. The first and committed reaction is catalyzed by glucose-6-phosphate dehydrogenase (G6PDH). We characterized the six members of the G6PDH gene family in Arabidopsis. Transit peptide analysis predicted two cytosolic and four plastidic isoforms. Five of the six genes encode active G6PDHs. The recombinant isoforms showed differences in substrate requirements and sensitivities to feedback inhibition. Plastidic isoforms were redox sensitive. One cytosolic isoform was insensitive to redox changes, while the other was inactivated by oxidation. The respective genes had distinct expression patterns that did not correlate with the activity of the proteins, implying a regulatory mechanism beyond the control of mRNA abundance. Two cytosolic and one plastidic isoform were detected in vivo using zymograms, and the respective genes were identified using T-DNA insertion lines. The activity of a plastidic isoform was detected in all tissues including photosynthetic tissues despite its sensitivity to reduction observed in vitro. Genomic data, gene expression, and in vivo enzyme activity data were integrated with in vitro biochemical data to propose in vivo roles for individual G6PDH isoforms in Arabidopsis.  相似文献   

20.
The role of fructose-2,6-bisphosphate (Fru-2,6-P(2)) as a regulatory metabolite in photosynthetic carbohydrate metabolism was studied in transgenic Arabidopsis plants with reduced activity of Fru-6-phosphate,2-kinase/Fru-2,6-bisphosphatase. A positive correlation was observed between the Fru-6-phosphate,2-kinase activity and the level of Fru-2,6-P(2) in the leaves. The partitioning of carbon was studied by (14)CO(2) labeling of photosynthetic products. Plant lines with Fru-2,6-P(2) levels down to 5% of the levels observed in wild-type (WT) plants had significantly altered partitioning of carbon between sucrose (Suc) versus starch. The ratio of (14)C incorporated into Suc and starch increased 2- to 3-fold in the plants with low levels of Fru-2,6-P(2) compared with WT. Transgenic plant lines with intermediate levels of Fru-2,6-P(2) compared with WT had a Suc-to-starch labeling ratio similar to the WT. Levels of sugars, starch, and phosphorylated intermediates in leaves were followed during the diurnal cycle. Plants with low levels of Fru-2,6-P(2) in leaves had high levels of Suc, glucose, and Fru and low levels of triose phosphates and glucose-1-P during the light period compared with WT. During the dark period these differences were eliminated. Our data provide direct evidence that Fru-2,6-P(2) affects photosynthetic carbon partitioning in Arabidopsis. Opposed to this, Fru-2,6-P(2) does not contribute significantly to regulation of metabolite levels in darkness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号