首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fungi and bacteria secrete glycoprotein cocktails to deconstruct cellulose. Cellulose-degrading enzymes (cellulases) are often modular, with catalytic domains for cellulose hydrolysis and carbohydrate-binding modules connected by linkers rich in serine and threonine with O-glycosylation. Few studies have probed the role that the linker and O-glycans play in catalysis. Since different expression and growth conditions produce different glycosylation patterns that affect enzyme activity, the structure-function relationships that glycosylation imparts to linkers are relevant for understanding cellulase mechanisms. Here, the linker of the Trichoderma reesei Family 7 cellobiohydrolase (Cel7A) is examined by simulation. Our results suggest that the Cel7A linker is an intrinsically disordered protein with and without glycosylation. Contrary to the predominant view, the O-glycosylation does not change the stiffness of the linker, as measured by the relative fluctuations in the end-to-end distance; rather, it provides a 16 Å extension, thus expanding the operating range of Cel7A. We explain observations from previous biochemical experiments in the light of results obtained here, and compare the Cel7A linker with linkers from other cellulases with sequence-based tools to predict disorder. This preliminary screen indicates that linkers from Family 7 enzymes from other genera and other cellulases within T. reesei may not be as disordered, warranting further study.  相似文献   

2.
Cellulases are important glycosyl hydrolases (GHs) that hydrolyze cellulose polymers into smaller oligosaccharides by breaking the cellulose β (1→4) bonds,and they are widely used to produce cellulosic ethanol from the plant biomass.N-linked and O-linked glycosylations were proposed to impact the catalytic efficiency,cellulose binding affinity and the stability of cellulases based on observations of individual cellulases.As far as we know,there has not been any systematic analysis of the distributions of N-...  相似文献   

3.
Understanding the mechanism by which cellulases from bacteria, fungi, and protozoans catalyze the digestion of lignocellulose is important for developing cost-effective strategies for bioethanol production. Cel7A from the fungus Trichoderma reesei is a model exoglucanase that degrades cellulose strands from their reducing ends by processively cleaving individual cellobiose units. Despite being one of the most studied cellulases, the binding and hydrolysis mechanisms of Cel7A are still debated. Here, we used single-molecule tracking to analyze the dynamics of 11,116 quantum dot-labeled TrCel7A molecules binding to and moving processively along immobilized cellulose. Individual enzyme molecules were localized with a spatial precision of a few nanometers and followed for hundreds of seconds. Most enzyme molecules bound to cellulose in a static state and dissociated without detectable movement, whereas a minority of molecules moved processively for an average distance of 39 nm at an average speed of 3.2 nm/s. These data were integrated into a three-state model in which TrCel7A molecules can bind from solution into either static or processive states and can reversibly switch between states before dissociating. From these results, we conclude that the rate-limiting step for cellulose degradation by Cel7A is the transition out of the static state, either by dissociation from the cellulose surface or by initiation of a processive run. Thus, accelerating the transition of Cel7A out of its static state is a potential avenue for improving cellulase efficiency.  相似文献   

4.
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions.  相似文献   

5.
Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost‐effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large‐scale protein production, and extensive host‐specific post‐translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum‐based transient expression technology, and this recombinant enzyme (TrCel7Arec) was compared with the native fungal enzyme (TrCel7Anat) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N‐terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O‐mannosylation in the plant host as compared with the native protein. In general, the purified full‐length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate‐binding properties, which can be attributed to larger N‐glycans and lack of O‐glycans in TrCel7Arec. All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.  相似文献   

6.
The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate.  相似文献   

7.
Cellulase Cel45 from Humicola insolens has a modular structure with a catalytic module and a cellulose-binding module (CBM) separated by a 36 amino acid, glycosylated, linker peptide. The solution conformation of the entire two domain Cel45 protein as well as the effect of the length and flexibility of the linker on the spatial arrangement of the constitutive modules were studied by small angle x-ray scattering combined with the known three-dimensional structure of the individual modules. The measured dimensions of the enzyme show that the linker exhibits an extended conformation leading to a maximum extension between the two centers of mass of each module corresponding to about four cellobiose units on a cellulose chain. The glycosylation of the linker is the key factor defining its extended conformation, and a five proline stretch mutation on the linker was found to confer a higher rigidity to the enzyme. Our study shows that the respective positioning of the catalytic module and the CBM onto the insoluble substrate is most likely influenced by the linker structure and flexibility. Our results are consistent with a model where cellulases can move on the surface of cellulose with a caterpillar-like displacement with free energy restrictions.  相似文献   

8.

Background

The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process.

Results

By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493).

Conclusions

Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.
  相似文献   

9.
Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir''s one binding site model with K d and A max values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir''s one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area.  相似文献   

10.
The modular xylanase Cex (or CfXyn10A) from Cellulomonas fimi consists of an N-terminal catalytic domain and a C-terminal cellulose-binding domain, joined by a glycosylated proline-threonine (PT) linker. To characterize the conformation and dynamics of the Cex linker and the consequences of its modification, we have used NMR spectroscopy to study full-length Cex in its nonglycosylated ( approximately 47 kDa) and glycosylated ( approximately 51 kDa) forms. The PT linker lacks any predominant structure in either form as indicated by random coil amide chemical shifts. Furthermore, heteronuclear (1)H-(15)N nuclear Overhauser effect relaxation measurements demonstrate that the linker is flexible on the ns-to-ps time scale and that glycosylation partially dampens this flexibility. The catalytic and cellulose-binding domains also exhibit identical amide chemical shifts whether in isolation or in the context of either unmodified or glycosylated full-length Cex. Therefore, there are no noncovalent interactions between the two domains of Cex or between either domain and the linker. This conclusion is supported by the distinct (15)N relaxation properties of the two domains, as well as their differential alignment within a magnetic field by Pf1 phage particles. These data demonstrate that the PT linker is a flexible tether, joining the structurally independent catalytic and cellulose-binding domains of Cex in an ensemble of conformations; however, more extended forms may predominate because of restrictions imparted by the alternating proline residues. This supports the postulate that the binding-domain anchors Cex to the surface of cellulose, whereas the linker provides flexibility for the catalytic domain to hydrolyze nearby hemicellulose (xylan) chains.  相似文献   

11.
We have estimated the effects of hyper-mannosylation of dockerin-type cellulase on cellulosome assembly by using Saccharomyces cerevisiae and 44 protein glycosylation mutants, because the heterologous protein displayed on yeast is assumed to be modified by yeast-specific hyper-mannosylation. First, we constructed the yeast strain CtminiCipA, which displays a heterologous scaffolding protein (miniCipA from Clostridium thermocellum) on its cell surface, and glycosylation mutants secreting a dockerin-type cellulase (Cel8Aenz-Cel48Sdoc: a fusion protein of the catalytic domain of C. thermocellum Cel8A and the dockerin domain of C. thermocellum Cel48S). Next, minicellulosomes were assembled by mixing the CtminiCipA strain and the dockerin-type cellulase secreted by each glycosylation mutant. By using an endoglucanase assay and flow cytometric analysis, we showed that some glycosylation mutants enhanced cellulosome assembly; in particular, disruption of glycosylation genes located in the endoplasmic reticulum showed intense enhancement. These findings suggest that inhibition of the core complex or precursor formation in protein glycosylation enhances cellulosome assembly, meaning that absence of glycosylation is more important for cellulosome assembly than reducing the size of the glycochain.  相似文献   

12.
Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes.  相似文献   

13.
The ascomycete Podospora anserina is a coprophilous fungus that grows at late stages on droppings of herbivores. Its genome encodes a large diversity of carbohydrate-active enzymes. Among them, four genes encode glycoside hydrolases from family 6 (GH6), the members of which comprise putative endoglucanases and exoglucanases, some of them exerting important functions for biomass degradation in fungi. Therefore, this family was selected for functional analysis. Three of the enzymes, P. anserina Cel6A (PaCel6A), PaCel6B, and PaCel6C, were functionally expressed in the yeast Pichia pastoris. All three GH6 enzymes hydrolyzed crystalline and amorphous cellulose but were inactive on hydroxyethyl cellulose, mannan, galactomannan, xyloglucan, arabinoxylan, arabinan, xylan, and pectin. PaCel6A had a catalytic efficiency on cellotetraose comparable to that of Trichoderma reesei Cel6A (TrCel6A), but PaCel6B and PaCel6C were clearly less efficient. PaCel6A was the enzyme with the highest stability at 45°C, while PaCel6C was the least stable enzyme, losing more than 50% of its activity after incubation at temperatures above 30°C for 24 h. In contrast to TrCel6A, all three studied P. anserina GH6 cellulases were stable over a wide range of pHs and conserved high activity at pH values of up to 9. Each enzyme displayed a distinct substrate and product profile, highlighting different modes of action, with PaCel6A being the enzyme most similar to TrCel6A. PaCel6B was the only enzyme with higher specific activity on carboxymethylcellulose (CMC) than on Avicel and showed lower processivity than the others. Structural modeling predicts an open catalytic cleft, suggesting that PaCel6B is an endoglucanase.  相似文献   

14.
Cellulases are enzymes capable of depolymerizing cellulose. Understanding their interactions with cellulose can improve biomass saccharification and enzyme recycling in biofuel production. This paper presents a study on binding and binding reversibility of Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A bound onto Bacterial Microcrystalline Cellulose. Cellulase binding was assessed through fluorescence recovery after photobleaching (FRAP) at 23, 34, and 45 °C. It was found that cellulase binding is only partially reversible. For processive cellulases Cel6B and Cel9A, an increase in temperature resulted in a decrease of the fraction of cellulases reversibly bound, while for endocellulase Cel5A this fraction remained constant. Kinetic parameters were obtained by fitting the FRAP curves to a binding-dominated model. The unbinding rate constants obtained for all temperatures were highest for Cel5A and lowest for Cel9A. The results presented demonstrate the usefulness of FRAP to access the fast binding kinetics characteristic of cellulases operating at their optimal temperature.  相似文献   

15.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

16.
Fungal cellobiohydrolases act at liquid-solid interfaces. They have the ability to hydrolyze cellulose chains of a crystalline substrate because of their two-domain structure, i.e. cellulose-binding domain and catalytic domain, and unique active site architecture. However, the details of the action of the two domains on crystalline cellulose are still unclear. Here, we present real time observations of Trichoderma reesei (Tr) cellobiohydrolase I (Cel7A) molecules sliding on crystalline cellulose, obtained with a high speed atomic force microscope. The average velocity of the sliding movement on crystalline cellulose was 3.5 nm/s, and interestingly, the catalytic domain without the cellulose-binding domain moved with a velocity similar to that of the intact TrCel7A enzyme. However, no sliding of a catalytically inactive enzyme (mutant E212Q) or a variant lacking tryptophan at the entrance of the active site tunnel (mutant W40A) could be detected. This indicates that, besides the hydrolysis of glycosidic bonds, the loading of a cellulose chain into the active site tunnel is also essential for the enzyme movement.  相似文献   

17.
Cellulosomes are large extracellular multi-enzyme complexes that exhibit elevated activity on plant cell-wall polysaccharides. In the present study, the relationships between the conformational flexibility and efficacy of cellulosomes, and the inter-modules linkers of their scaffold protein were investigated. For this purpose, the length of the intrinsically disordered Ser/Thr-rich 50-residue linker connecting a Clostridium thermocellum and a Clostridium cellulolyticum cohesin in a hybrid scaffoldin (Scaf4) was changed by sequences ranging from 4 to 128 residues. The composition was also modified and new linkers composed of series of N, S or repeats of the EPPV motif were generated. Two model cellulases (Cel48F and Cel9G) appended with appropriate dockerins were subsequently bound to the engineered scaffoldins. All the resulting minicomplexes displayed the same activity on crystalline cellulose as the complex based on the initial Scaf4, and were found to be 2-fold more active than Cel48F and Cel9G bound to separate cohesins. Small-angle X-ray scattering assays of the engineered scaffoldins confirmed, however, that the size and the conformational flexibility of some of the new inter-cohesins linkers differed significantly from that of the initial 50 residue linker displayed by the parental Scaf4. Our data suggest that the synergy induced by proximity does not require a specific inter-cohesins sequence or distance. The present study reveals that complexation onto the hybrid scaffoldins modifies the type of soluble sugars released from crystalline cellulose by the selected cellulases, compared to the free enzyme system.  相似文献   

18.
The genome of Clostridium cellulolyticum encodes 13 GH9 enzymes that display seven distinct domain organizations. All but one contain a dockerin module and were formerly detected in the cellulosomes, but only three of them were previously studied (Cel9E, Cel9G, and Cel9M). In this study, the 10 uncharacterized GH9 enzymes were overproduced in Escherichia coli and purified, and their activity pattern was investigated in the free state or in cellulosome chimeras with key cellulosomal cellulases. The newly purified GH9 enzymes, including those that share similar organization, all exhibited distinct activity patterns, various binding capacities on cellulosic substrates, and different synergies with pivotal cellulases in mini-cellulosomes. Furthermore, one enzyme (Cel9X) was characterized as the first genuine endoxyloglucanase belonging to this family, with no activity on soluble and insoluble celluloses. Another GH9 enzyme (Cel9V), whose sequence is 78% identical to the cellulosomal cellulase Cel9E, was found inactive in the free and complexed states on all tested substrates. The sole noncellulosomal GH9 (Cel9W) is a cellulase displaying a broad substrate specificity, whose engineered form bearing a dockerin can act synergistically in minicomplexes. Finally, incorporation of all GH9 cellulases in trivalent cellulosome chimera containing Cel48F and Cel9G generated a mixture of heterogeneous mini-cellulosomes that exhibit more activity on crystalline cellulose than the best homogeneous tri-functional complex. Altogether, our data emphasize the importance of GH9 diversity in bacterial cellulosomes, confirm that Cel9G is the most synergistic GH9 with the major endoprocessive cellulase Cel48F, but also identify Cel9U as an important cellulosomal component during cellulose depolymerization.  相似文献   

19.
The structural properties of the linker peptide connecting the cellulose-binding module to the catalytic module in bimodular cellulases have been investigated by small-angle x-ray scattering. Since the linker and the cellulose-binding module are relatively small and cannot be readily detected separately, the conformation of the linker was studied by means of an artificial fusion protein, Cel6BA, in which an 88-residue linker connects the large catalytic modules of the cellulases Cel6A and Cel6B from Humicola insolens. Our data showed that Cel6BA is very elongated with a maximum dimension of 178 A, but could not be described by a single conformation. Modeling of a series of Cel6BA conformers with interdomain separations ranging between 10 A and 130 A showed that good Guinier and P(r) profile fits were obtained by a weighted average of the scattering curves of all the models where the linker follows a nonrandom distribution, with a preference for the more compact conformers. These structural properties are likely to be essential for the function of the linker as a molecular spring between the two functional modules. Small-angle x-ray scattering therefore provides a unique tool to quantitatively analyze the conformational disorder typical of proteins described as natively unfolded.  相似文献   

20.
Barr BK  Holewinski RJ 《Biochemistry》2002,41(13):4447-4452
The kinetics of cellulose binding and hydrolysis by cellulases is not well understood except at steady-state conditions. For use in studies of cellulase pre-steady-state and steady-state kinetics, we have prepared 4-methyl-7-thioumbelliferyl-beta-D-cellobioside (MUS-CB), a ground-state nonhydrolyzable analogue of the fluorescent cellulase substrate 4-methylumbelliferyl-beta-D-cellobioside (MU-CB). MUS-CB is not hydrolyzed by the catalytic domain of cellulase E1 from Acidothermus cellulolyticus under conditions where this enzyme rapidly degrades MU-CB. Thermodynamic parameters describing the steady-state binding of MUS-CB to Thermobifida fusca cellulase Cel6A are similar to those for MU-CB, indicating that MUS-CB can be used in place of MU-CB to study binding events in the Cel6A active-site cleft. In the pre-steady-state, MUS-CB binds to Cel6A by a simple, one-step bimolecular association reaction. It is anticipated that similar thio-containing 4-methylumbelliferyl compounds will have applications in studies of other enzyme systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号