首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simple sequence repeats (SSRs) are genome domains located in both coding and non-coding regions in eukaryotic genomes. Although SSRs are often characterized by low polymorphism, their DNA-flanking sequences could be a useful source of DNA markers, which could help in genetic studies and breeding because they are associated with genes that control traits of interest. In this study, 56 genotypes from different Prunus species were used, including peach, apricot, plum, and almond (already phenotyped for several agronomical traits, including self-compatibility, flowering and ripening time, fruit type, skin and flesh color, and shell hardness). These Prunus genotypes were molecularly characterized using 28 SSR markers developed in exons, introns, and intergenic regions. All these genes were located in specific regions where quantitative trait loci (QTLs) for certain fruit quality traits were also located, including flowering and ripening times and fruit flesh and skin color. A sum of 309 SSR alleles were identified in the whole panel of analyzed cultivars, with expected heterozygosity values of 0.61 (upstream SSRs), 0.17 (exonic SSRs), 0.65 (intronic SSRs), and 0.58 (downstream SSRs). These values prove the low level of polymorphism of the exonic (gene-coding regions) markers. Cluster and structural analysis based on SSR data clearly differentiated the genotypes according to either specie (for the four species) and pedigree (apricot) or geographic origin (Japanese plum). In addition, some SSR markers mainly developed in intergenic regions could be associated with genes that control traits of interest in breeding and could therefore help in marker-assisted breeding. These findings highlight the importance of using molecular markers able to discriminate between the functional roles of the gene allelic variants.  相似文献   

2.
Simple sequence repeats (SSRs) can be derived from the complete genome sequence. These markers are important for gene mapping as well as marker-assisted selection (MAS). To develop SSRs for cotton gene mapping, we selected the complete genome sequence of Gossypium raimondii, which consisted of 4447 non-redundant scaffolds. Out of 775.2 Mb sequence examined, a total of 136,345 microsatellites were identified with a density of 5.69 kb per SSR in the G. raimondii genome leading to development of 112,177 primer pairs. The distributions of SSRs in the genome were non-random. Among the different motifs ranging from 1 to 6 bp, penta-nucleotide repeats were most abundant (30.5%), followed by tetra-nucleotide repeats (18.2%) and di-nucleotide repeats (16.9%). Among all identified 457 motif types, the most frequently occurring repeat motifs were poly-AT/TA, which accounted for 79.8% of the total di-nt SSRs, followed by AAAT/TTTA with 51.5% of the total tetra-nucleotede. Further, 18,834 microsatellites were detected from the protein-coding genes, and the frequency of gene containing SSRs was 46.0% in 40,976 genes of G. raimondii. These genome-based SSRs developed in the present study will lay the groundwork for developing large numbers of SSR markers for genetic mapping, gene discovery, genetic diversity analysis, and MAS breeding in cotton.  相似文献   

3.
Microsatellite or simple sequence repeat (SSR) markers have been successfully used for genomic mapping, DNA fingerprinting, and marker-assisted selection in many plant species. Here we report the first successful assignment of 15 SSR markers to the Phaseolus vulgaris molecular linkage map. A total of 37 SSR primer pairs were developed and tested for amplification and product-length polymorphism with BAT93 and Jalo EEP558, the parental lines of an F7 recombinant inbred (RI) population previously used for the construction of a common bean molecular linkage map. Sixteen of the SSRs polymorphic to the parental lines were analyzed for segregation and 15 of them were assigned to seven different linkage groups, indicating a widespread distribution throughout the bean genome. Map positions for genes coding for DNAJ-like protein, pathogenesis-related protein 3, plastid-located glutamine synthetase, endochitinase, sn-glycerol-3 phosphate acyltransferase, NADP-dependent malic enzyme, and protein kinase were determined for the first time. Addition of three SSR loci to linkage group B4 brought two separated smaller linkage groups together to form a larger linkage group. Analysis of allele segregation in the F7 RI population revealed that all 16 SSRs segregated in the expected 1:1 ratio. These SSR markers were stable and easy to assay by polymerase chain reaction (PCR). They should be useful markers for genetic mapping, genotype identification, and marker-assisted selection of common beans.  相似文献   

4.
A microsatellite (simple sequence repeat; SSR) panel for Cryptomeria japonica was established, using both newly developed and previously reported markers, to construct a frame of linkage map and facilitate localization of important genes in this species. In this study, 32 new expressed sequence tag SSRs (EST-SSRs) and 12 new genomic SSRs (gSSRs) were developed. Their average polymorphism information content (PIC) values were 0.549 and 0.776, respectively. The markers were mapped onto a high-density linkage map. The SSR panel that was established to cover the genome consisted of 46 gSSRs and 47 EST-SSRs. The number of SSR markers in each linkage group, the average map distance between loci within a linkage group, and the average PIC values in each linkage group ranged from 6 to 13, 6.77 to 19.88 and 0.475 to 0.712, respectively. The utility of the SSR panel was tested by using it to localize a male-sterile gene, ms-2. The ms-2 locus was successfully localized on the linkage group 5 using 33 SSR markers (three SSRs per linkage group) which were selected from the SSR panel based on the existence of polymorphisms and the absence of null alleles in the mapping population for ms-2. A partial linkage map surrounding the ms-2 locus was then constructed using a further 57 single nucleotide polymorphisms and three SSRs, to facilitate future development of markers tightly linked to the ms-2 locus for use in marker-assisted selection. The SSR panel covering the C. japonica genome will allow researchers to localize important genes efficiently.  相似文献   

5.
Chinese jujube (Ziziphus jujuba), an economically important species in the Rhamnaceae family, is a popular fruit tree in Asia. Here, we surveyed and characterized simple sequence repeats (SSRs) in the jujube genome. A total of 436,676 SSR loci were identified, with an average distance of 0.93 Kb between the loci. A large proportion of the SSRs included mononucleotide, dinucleotide and trinucleotide repeat motifs, which accounted for 64.87%, 24.40%, and 8.74% of all repeats, respectively. Among the mononucleotide repeats, A/T was the most common, whereas AT/TA was the most common dinucleotide repeat. A total of 30,565 primer pairs were successfully designed and screened using a series of criteria. Moreover, 725 of 1,000 randomly selected primer pairs were effective among 6 cultivars, and 511 of these primer pairs were polymorphic. Sequencing the amplicons of two SSRs across three jujube cultivars revealed variations in the repeats. The transferability of jujube SSR primers proved that 35/64 SSRs could be transferred across family boundary. Using jujube SSR primers, clustering analysis results from 15 species were highly consistent with the Angiosperm Phylogeny Group (APGIII) System. The genome-wide characterization of SSRs in Chinese jujube is very valuable for whole-genome characterization and marker-assisted selection in jujube breeding. In addition, the transferability of jujube SSR primers could provide a solid foundation for their further utilization.  相似文献   

6.
Genetic variation present in 64 durum wheat accessions was investigated by using three sources of microsatellite (SSR) markers: EST-derived SSRs (EST-SSRs) and two sources of SSRs isolated from total genomic DNA. Out of 245 SSR primer pairs screened, 22 EST-SSRs and 20 genomic-derived SSRs were polymorphic and used for genotyping. The EST-SSR primers produced high quality markers, but had the lowest level of polymorphism (25%) compared to the other two sources of genomic SSR markers (53%). The 42 SSR markers detected 189 polymorphic alleles with an average number of 4.5 alleles per locus. The coefficient of similarity ranged from 0.28 to 0.70 and the estimates of similarity varied when different sources of SSR markers were used to genotype the accessions. This study showed that EST-derived SSR markers developed in bread wheat are polymorphic in durum wheat when assaying loci of the A and B genomes. A minumum of ten EST-SSRs generated a very low probability of identity (0.36×10−12) indicating that these SSRs have a very high discriminatory power. EST-SSR markers directly sample variation in transcribed regions of the genome, which may enhance their value in marker-assisted selection, comparative genetic analysis and for exploiting wheat genetic resources by providing a more-direct estimate of functional diversity. Received: 19 December 2000 / Accepted: 17 April 2001  相似文献   

7.
Sweet orange (Citrus sinensis) is one of the major cultivated and most-consumed citrus species. With the goal of enhancing the genomic resources in citrus, we surveyed, developed and characterized microsatellite markers in the ≈347 Mb sequence assembly of the sweet orange genome. A total of 50,846 SSRs were identified with a frequency of 146.4 SSRs/Mbp. Dinucleotide repeats are the most frequent repeat class and the highest density of SSRs was found in chromosome 4. SSRs are non-randomly distributed in the genome and most of the SSRs (62.02%) are located in the intergenic regions. We found that AT-rich SSRs are more frequent than GC-rich SSRs. A total number of 21,248 SSR primers were successfully developed, which represents 89 SSR markers per Mb of the genome. A subset of 950 developed SSR primer pairs were synthesized and tested by wet lab experiments on a set of 16 citrus accessions. In total we identified 534 (56.21%) polymorphic SSR markers that will be useful in citrus improvement. The number of amplified alleles ranges from 2 to 12 with an average of 4 alleles per marker and an average PIC value of 0.75. The newly developed sweet orange primer sequences, their in silico PCR products, exact position in the genome assembly and putative function are made publicly available. We present the largest number of SSR markers ever developed for a citrus species. Almost two thirds of the markers are transferable to 16 citrus relatives and may be used for constructing a high density linkage map. In addition, they are valuable for marker-assisted selection studies, population structure analyses and comparative genomic studies of C. sinensis with other citrus related species. Altogether, these markers provide a significant contribution to the citrus research community.  相似文献   

8.
Gene-derived simple sequence repeats (genic SSRs), also known as functional markers, are often preferred over random genomic markers because they represent variation in gene coding and/or regulatory regions. We characterized 544 genic SSR loci derived from 138 candidate genes involved in wood formation, distributed throughout the genome of Populus tomentosa, a key ecological and cultivated wood production species. Of these SSRs, three-quarters were located in the promoter or intron regions, and dinucleotide (59.7%) and trinucleotide repeat motifs (26.5%) predominated. By screening 15 wild P. tomentosa ecotypes, we identified 188 polymorphic genic SSRs with 861 alleles, 2–7 alleles for each marker. Transferability analysis of 30 random genic SSRs, testing whether these SSRs work in 26 genotypes of five genus Populus sections (outgroup, Salix matsudana), showed that 72% of the SSRs could be amplified in Turanga and 100% could be amplified in Leuce. Based on genotyping of these 26 genotypes, a neighbour-joining analysis showed the expected six phylogenetic groupings. In silico analysis of SSR variation in 220 sequences that are homologous between P. tomentosa and Populus trichocarpa suggested that genic SSR variations between relatives were predominantly affected by repeat motif variations or flanking sequence mutations. Inheritance tests and single-marker associations demonstrated the power of genic SSRs in family-based linkage mapping and candidate gene-based association studies, as well as marker-assisted selection and comparative genomic studies of P. tomentosa and related species.  相似文献   

9.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

10.
Papaya (Carica papaya L.) is the first fleshy fruit with a climacteric ripening pattern to be sequenced. As a member of the Rosids superorder in the order Brassicales, papaya apparently lacks the genome duplication that occurred twice in Arabidopsis. The predicted papaya genes that are homologous to those potentially involved in fruit growth, development, and ripening were investigated. Genes homologous to those involved in tomato fruit size and shape were found. Fewer predicted papaya expansin genes were found and no Expansin Like-B genes were predicted. Compared to Arabidopsis and tomato, fewer genes that may impact sugar accumulation in papaya, ethylene synthesis and response, respiration, chlorophyll degradation and carotenoid synthesis were predicted. Similar or fewer genes were found in papaya for the enzymes leading to volatile production than so far determined for tomato. The presence of fewer papaya genes in most fruit development and ripening categories suggests less subfunctionalization of gene action. The lack of whole genome duplication and reductions in most gene families and biosynthetic pathways make papaya a valuable and unique tool to study the evolution of fruit ripening and the complex regulatory networks active in fruit ripening.  相似文献   

11.

Gene-derived simple sequence repeats (genic SSRs), also known as functional markers, are generally superior to random markers because they are located in genes and therefore may affect gene expression or function. However, extremely limited genic SSRs are available for tree peony. We used the functional gene sequences available from Paeonia to develop genic SSRs. A total of 132 SSR loci were identified from 35 cDNA sequences, of which trinucleotide (58, 43.9%) and hexanucleotide repeat (37, 28.0%) were dominant. Moreover, 121 primer pairs were successfully designed and synthesized, of which 49 primer pairs (40.5%) provided efficient and reliable amplification. By screening 16 tree peony varieties, we developed eight polymorphic genic SSRs with 37 alleles, ranging from 2 to 11 for each marker. Transferability analysis indicated that 100% of the genic SSRs could be amplified in eight other Paeonia samples. Based on eight polymorphic genic SSRs and 12 polymorphic EST-SSRs developed by predecessors, the molecular identity of 190 tree peony cultivars was constructed by capillary electrophoresis. The results showed that 146 alleles and 338 genotypes were detected, with 2–13 alleles and 3–36 genotypes for each marker. All cultivars were completely identified and exhibited unique DNA identity. In addition, the identification efficiency of different primers combinations was analyzed, and 190 germplasms were identified using 6 core primers. This study provides valuable genic SSR resources for marker-assisted selection breeding of the genus Paeonia. The DNA identity of cultivars is of great significance for the protection, utilization and management of tree peony resources.

  相似文献   

12.
The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.  相似文献   

13.
Dull/glossy fruit skin is a highly valuable external quality trait that affects the market value of cucumbers. In this study, genetic analysis showed that one single dominant gene, D (dull fruit skin), determines the dull fruit skin trait in cucumber. By combining bulked segregant analysis with 11 published polymorphic molecular markers on chromosome 5, the D/d gene was preliminarily mapped between markers SCZ69 and SSR16203, at genetic distances of 0.3 and 0.6 cM, respectively. Subsequently, a larger F2 (S06 × S94) population (842 individuals in total) was used for high-resolution mapping of the D/d gene. Finally, the D/d gene was fine-mapped between markers SSR37 and SSR112, at a physical distance of 244.9 kb (containing 31 candidate genes), using eight newly developed polymorphic simple sequence repeat (SSR) markers between SCZ69 and SSR16203. Based on semi-quantitative RT-PCR analysis, the possible candidate gene D was identified as Csa016880 or Csa016887. Meanwhile, validity analysis of the markers SSR37 and SSR112 was performed with 72 dull/glossy fruit lines, and showed that the two co-dominant SSR markers could be used for marker-assisted selection of the dull/glossy fruit trait in cucumber breeding. Moreover, this study will be helpful for cloning of the D gene in cucumber.  相似文献   

14.
15.
Microsatellites, or simple sequence repeats (SSRs) are very useful molecular markers for a number of plant species. They are commonly used in cultivar identification, plant variety protection, as anchor markers in genetic mapping, and in marker-assisted breeding. Early development of SSRs was hampered by the high cost of library screening and clone sequencing. Currently, large public SSR datasets exist for many crop species, but the number of publicly available, mapped SSRs for potato is relatively low (~100). We have utilized a database mining approach to identify SSR-containing sequences in The Institute For Genomic Research Potato Gene Index database (), focusing on sequences with size polymorphisms present in this dataset. Ninety-four primer pairs flanking SSR sequences were synthesized and used to amplify potato DNA. This study rendered 61 useful SSRs that were located in pre-existing genetic maps, fingerprinted in a set of 30 cultivars from South America, North America, and Europe or a combination thereof. The high proportion of success (65%) of expressed sequence tag-derived SSRs obtained in this work validates the use of transcribed sequences as a source of markers. These markers will be useful for genetic mapping, taxonomic studies, marker-assisted selection, and cultivar identification.  相似文献   

16.
Simple sequence repeats (SSRs) are co-dominant markers, and are very useful in constructing consensus maps in heterozygous perennial plant species like pistachio. Pistacia vera L. is the only cultivated species in the genus Pistacia. It is dioecious with a haploid chromosome count of n =?15. Saturated genetic linkage maps can be a reference to identify markers linked to economically important phenotypic traits that could be useful for early breeding and selection programs. Therefore, this study aimed to develop polymorphic SSR markers in silico and to construct the first SSR-based genetic linkage map in pistachio. The DNA sequences of three cultivars (Siirt, Ohadi, and Bagyolu) of P. vera and one genotype belonging to P. atlantica (Pa-18) were obtained by next-generation sequencing, and 625 polymorphic SSR loci were identified from 750 screened in silico polymorphic SSR primer pairs. The novel SSRs were used to construct SSR-based genetic linkage maps in pistachio along with published SSRs in Siirt × Bagyolu F1 population. Most (71.4%) of the SSRs were common markers that were used to construct consensus and parental maps spanning 15 linkage groups (LGs). A total of 384, 317, and 341 markers were mapped in the consensus, female, and male genetic maps with total lengths of 1511.3, 1427.0, and 1453.4 cM, respectively. The large number of SSR markers discovered and the first SSR-based genetic linkage map constructed in this study will be useful for anchoring loci for map integration, and will facilitate marker-assisted selection efforts for important horticultural traits in the genus Pistacia.  相似文献   

17.
Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic and universally distributed in eukaryotes. SSRs have been used extensively as sequence tagged markers in genetic studies. Recently, the functional and evolutionary importance of SSRs has received considerable attention. Here we report the mining and characterization of the SSRs in papaya genome. We analyzed SSRs from 277.4 Mb of whole genome shotgun (WGS) sequences, 51.2 Mb bacterial artificial chromosome (BAC) end sequences (BES), and 13.4 Mb expressed sequence tag (EST) sequences. The papaya SSR density was one SSR per 0.7 kb of DNA sequence in the WGS, which was higher than that in BES and EST sequences. SSR abundance was dramatically reduced as the repeat length increased. According to SSR motif length, dinucleotide repeats were the most common motif in class I, whereas hexanucleotides were the most copious in class II SSRs. The tri- and hexanucleotide repeats of both classes were greater in EST sequences compared to genomic sequences. In class I SSR, AT and AAT were the most frequent motifs in BES and WGS sequences. By contrast, AG and AAG were the most abundant in EST sequences. For SSR marker development, 9,860 primer pairs were surveyed for amplification and polymorphism. Successful amplification and polymorphic rates were 66.6% and 17.6%, respectively. The highest polymorphic rates were achieved by AT, AG, and ATG motifs. The genome wide analysis of microsatellites revealed their frequency and distribution in papaya genome, which varies among plant genomes. This complete set of SSRs markers throughout the genome will assist diverse genetic studies in papaya and related species.  相似文献   

18.

Background

The recent development of novel repeat-fruiting types of blackberry (Rubus L.) cultivars, combined with a long history of morphological marker-assisted selection for thornlessness by blackberry breeders, has given rise to increased interest in using molecular markers to facilitate blackberry breeding. Yet no genetic maps, molecular markers, or even sequences exist specifically for cultivated blackberry. The purpose of this study is to begin development of these tools by generating and annotating the first blackberry expressed sequence tag (EST) library, designing primers from the ESTs to amplify regions containing simple sequence repeats (SSR), and testing the usefulness of a subset of the EST-SSRs with two blackberry cultivars.

Results

A cDNA library of 18,432 clones was generated from expanding leaf tissue of the cultivar Merton Thornless, a progenitor of many thornless commercial cultivars. Among the most abundantly expressed of the 3,000 genes annotated were those involved with energy, cell structure, and defense. From individual sequences containing SSRs, 673 primer pairs were designed. Of a randomly chosen set of 33 primer pairs tested with two blackberry cultivars, 10 detected an average of 1.9 polymorphic PCR products.

Conclusion

This rate predicts that this library may yield as many as 940 SSR primer pairs detecting 1,786 polymorphisms. This may be sufficient to generate a genetic map that can be used to associate molecular markers with phenotypic traits, making possible molecular marker-assisted breeding to compliment existing morphological marker-assisted breeding in blackberry.  相似文献   

19.
大麦基因组中的微卫星标记及其应用   总被引:12,自引:0,他引:12  
冯宗云  张义正  凌宏清 《遗传》2002,24(6):727-733
微卫星是以少数几个核苷酸为单位多次串联重复的DNA序列,是一种简单序列重复(simple sequence repeats,SSR),两侧一般是保守序列。由于它具有多态性高、共显性、容易用PCR检测和结果稳定可靠等特点,因此是一种十分理想的分子标记。大麦的微卫星DNA随机分布于基因组中,平均每一个微卫星基因座有3~18个等位基因,最高可达37个。SSR标记已广泛用于分子遗传图谱的构建、遗传多样性研究、种质鉴定、主要性状基因的定位及分子标记辅助选择育种等。大多数SSR标记集中在着丝粒附近区域,1HL、5HL和6HS明显缺乏SSR标记。大麦的SSR标记还有待进一步的开发。 Microsatellite Markers and Applications in the Barley Genome FENG Zong-yun1,2,3,ZHANG Yi-zheng1,LING Hong-qing3 1.College of Life Sciences,Sichuan University,Chengdu 610065,China; 2.College of Agronomy,Sichuan Agricultural University,Ya'an 625014,China; 3.The State Key Laboratory of Plant Cell & Chromosome Engineering,Institute of Genetics & Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China Abstract:Microsatellites,also called simple sequence repeats (SSR),are simple,tandemly repeated DNA sequences with a repeat length of a few base pairs,and are very ideally used as molecular markers because of their abundance,high level of polymorphism,co-dominance and ease of assay with the polymerase chain reaction (PCR) by selecting primers as the conserved DNA sequences flanking the SSRs,as well as better stability.The experiments showed that SSRs are randomly distributed throughout the barley genome,and there are 3~18 alleles at a single SSR locus,up to 37 alleles/locus.SSR markers have being widely applied in the construction of molecular genetic map,the study of genetic diversity,the identification of germplasm,gene mapping for important traits and molecular marker-assisted selection.Meanwhile,most of markers are strongly clustered around the centromeric regions of all seven linkage groups.As a result of the clustering,genome coverage with SSRs remains incomplete with an obvious lack of markers on the long arms of chromosomes 1H and 5H and short arm of chromosome 6H.Therefore,it is very potential and necessary to further develop SSR markers in barley. Key words:barley;microsatellite marker;simple sequence repeats;genetic diversity;molecular mapping  相似文献   

20.
Simple sequence repeats (SSRs) have been widely used in the construction of linkage maps, quantitative trait loci (QTLs) mapping, and marker-assisted selection (MAS). The availability of the sequenced Actinidia chinensis (kiwifruit) genome allows for the inexpensive and efficient development of microsatellite markers. In this study, a total of 49,067 SSRs were identified and characterized in the genome sequences of kiwifruit. Dinucleotide repeats are the most abundant SSRs, with the AG/TC motif accounting for 44.2 % of all SSRs in the genome. Fifty-five newly derived SSRs, together with 46 previously available SSRs, were integrated into linkage maps of an interspecific kiwifruit population. In addition, eight sex-linked SSR markers (including one previously published SSR) were mapped in the sex-related region on the LG25, suggesting that recombination is partially suppressed to maintain dioecy in kiwifruit. The SSRs developed from this study are a valuable resource for kiwifruit genetics and will contribute to the use of MAS in early sex determination of dioecious plant breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号