首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Obesity is characterized by the accumulation of fat in the liver and other tissues, leading to insulin resistance. We have previously shown that a specific inhibitor of glucosylceramide synthase, which inhibits the initial step in the synthesis of glycosphingolipids (GSLs), improved glucose metabolism and decreased hepatic steatosis in both ob/ob and diet-induced obese (DIO) mice. Here we have determined in the DIO mouse model the efficacy of a related small molecule compound, Genz-112638, which is currently being evaluated clinically for the treatment of Gaucher disease, a lysosomal storage disorder.

Methodology/Principal Findings

DIO mice were treated with the Genz-112638 for 12 to 16 weeks by daily oral gavage. Genz-112638 lowered HbA1c levels and increased glucose tolerance. Whole body adiposity was not affected in normal mice, but decreased in drug-treated obese mice. Drug treatment also significantly lowered liver triglyceride levels and reduced the development of hepatic steatosis. We performed hyperinsulinemic-euglycemic clamps on the DIO mice treated with Genz-112638 and showed that insulin-mediated suppression of hepatic glucose production increased significantly compared to the placebo treated mice, indicating a marked improvement in hepatic insulin sensitivity.

Conclusions/Significance

These results indicate that GSL inhibition in obese mice primarily results in an increase in insulin action in the liver, and suggests that GSLs may have an important role in hepatic insulin resistance in conditions of obesity.  相似文献   

2.
Feng B  Jiao P  Nie Y  Kim T  Jun D  van Rooijen N  Yang Z  Xu H 《PloS one》2011,6(9):e24358

Background

Obesity-related adipose inflammation has been thought to be a causal factor for the development of insulin resistance and type 2 diabetes. Infiltrated macrophages in adipose tissue of obese animals and humans are an important source for inflammatory cytokines. Clodronate liposomes can ablate macrophages by inducing apoptosis. In this study, we aim to determine whether peritoneal injection of clodronate liposomes has any beneficial effect on systemic glucose homeostasis/insulin sensitivity and whether macrophage content in visceral adipose tissue will be reduced in diet-induced obese (DIO) mice.

Methodology/Principal Findings

Clodronate liposomes were used to deplete macrophages in lean and DIO mice. Macrophage content in visceral adipose tissue, metabolic parameters, glucose and insulin tolerance, adipose and liver histology, adipokine and cytokine production were examined. Hyperinsulinemic-euglycemic clamp study was also performed to assess systemic insulin sensitivity. Peritoneal injection of clodronate liposomes significantly reduced blood glucose and insulin levels in DIO mice. Systemic glucose tolerance and insulin sensitivity were mildly improved in both lean and DIO mice treated with clodronate liposomes by intraperitoneal (ip) injection. Hepatosteatosis was dramatically alleviated and suppression of hepatic glucose output was markedly increased in DIO mice treated with clodronate liposomes. Macrophage content in visceral adipose tissue of DIO mice was effectively decreased without affecting subcutaneous adipose tissue. Interestingly, levels of insulin sensitizing hormone adiponectin, including the high molecular weight form, were significantly elevated in circulation.

Conclusions/Significance

Intraperitoneal injection of clodronate liposomes reduces visceral adipose tissue macrophages, improves systemic glucose homeostasis and insulin sensitivity in DIO mice, which can be partially attributable to increased adiponectin levels.  相似文献   

3.

Rationale

Adipose tissue produces adiponectin, an anti-inflammatory protein. Adiponectin deficiency in mice is associated with abnormal post-natal alveolar development.

Objective

We hypothesized that lower serum adiponectin concentrations are associated with lower lung function in humans, independent of obesity. We explored mediation of this association by insulin resistance and systemic inflammation.

Methods and Measurements

Spirometry testing was conducted at years 10 and 20 follow-up evaluation visits in 2,056 eligible young adult participants in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Body mass index, serum adiponectin, serum C-reactive protein (a marker of systemic inflammation), and insulin resistance were assessed at year 15.

Main Results

After controlling for body mass index, years 10 and 20 forced vital capacity (FVC) were 81 ml and 82 ml lower respectively (p = 0.004 and 0.01 respectively) in the lowest vs. highest adiponectin quartiles. Similarly, years 10 and 20 forced expiratory volume in one second (FEV1) were 50 ml and 38 ml lower (p = 0.01 and 0.09, respectively) in the lowest vs. highest adiponectin quartiles. These associations were no longer significant after adjustment for insulin resistance and C-reactive protein. Serum adiponectin was not associated with FEV1/FVC or peak FEV1.

Conclusions

Independent of obesity, lower serum adiponectin concentrations are associated with lower lung function. The attenuation of this association after adjustment for insulin resistance and systemic inflammation suggests that these covariates are on a causal pathway linking adiponectin and lung function.  相似文献   

4.

Aim

Glucagon is an essential regulator of hepatic glucose production (HGP), which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR), NPB112, on glucose homeostasis in diet-induced obese (DIO) mice.

Methods

The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP.

Results

Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min) compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min) in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment.

Conclusions

A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.  相似文献   

5.

Background

Obesity induced by high fat (HF) diet is associated with inflammation which contributes to development of insulin resistance. Most prior studies have focused on adipose tissue as the source of obesity-associated inflammation. Increasing evidence links intestinal bacteria to development of diet-induced obesity (DIO). This study tested the hypothesis that HF western diet and gut bacteria interact to promote intestinal inflammation, which contributes to the progression of obesity and insulin resistance.

Methodology/Principal Findings

Conventionally raised specific-pathogen free (CONV) and germ-free (GF) mice were given HF or low fat (LF) diet for 2–16 weeks. Body weight and adiposity were measured. Intestinal inflammation was assessed by evaluation of TNF-α mRNA and activation of a NF-κBEGFP reporter gene. In CONV but not GF mice, HF diet induced increases in body weight and adiposity. HF diet induced ileal TNF-α mRNA in CONV but not GF mice and this increase preceded obesity and strongly and significantly correlated with diet induced weight gain, adiposity, plasma insulin and glucose. In CONV mice HF diet also resulted in activation of NF-κBEGFP in epithelial cells, immune cells and endothelial cells of small intestine. Further experiments demonstrated that fecal slurries from CONV mice fed HF diet are sufficient to activate NF-κBEGFP in GF NF-κBEGFP mice.

Conclusions/Significance

Bacteria and HF diet interact to promote proinflammatory changes in the small intestine, which precede weight gain and obesity and show strong and significant associations with progression of obesity and development of insulin resistance. To our knowledge, this is the first evidence that intestinal inflammation is an early consequence of HF diet which may contribute to obesity and associated insulin resistance. Interventions which limit intestinal inflammation induced by HF diet and bacteria may protect against obesity and insulin resistance.  相似文献   

6.
He M  Su H  Gao W  Johansson SM  Liu Q  Wu X  Liao J  Young AA  Bartfai T  Wang MW 《PloS one》2010,5(12):e14205

Background

Glucagon-like peptide-1 (GLP-1) is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R) agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO) mice, an animal model of human obesity and insulin resistance.

Methodology/Principal Findings

DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg) for 12 weeks. Body weight, body mass index (BMI), food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg) reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various extents by Boc5 treatment.

Conclusions/Significance

Boc5 may produce metabolic benefits via multiple synergistic mechanisms and may represent an attractive tool for therapeutic intervention of obesity and diabetes, by means of non-peptidic GLP-1R agonism.  相似文献   

7.

Aims/Hypothesis

We developed KDT501, a novel substituted 1,3-cyclopentadione chemically derived from hop extracts, and evaluated it in various in vitro and in vivo models of diabetes and insulin sensitivity.

Methods

KDT501 was evaluated for anti-inflammatory effects in monocyte/macrophage cells; agonistic activity for peroxisome proliferator-activated receptors (PPAR); lipogenesis and gene expression profile in human subcutaneous adipocytes. Body composition, glucose, insulin sensitivity, and lipids were assessed in diet-induced obesity (DIO) mice and Zucker Diabetic Fatty (ZDF) rats after oral administration.

Results

KDT501 mediated lipogenesis in 3T3L1 and human subcutaneous adipocytes; however, the gene expression profile of KDT501 differed from that of the full PPARγ agonist rosiglitazone, suggesting that KDT501 has pleiotropic biological activities. In addition, KDT501 showed only modest, partial PPARγ agonist activity and exhibited anti-inflammatory effects in monocytes/macrophages that were not observed with rosiglitazone. In a DIO mouse model, oral administration of KDT501 significantly reduced fed blood glucose, glucose/insulin AUC following an oral glucose bolus, and body fat. In ZDF rats, oral administration of KDT501 significantly reduced fed glucose, fasting plasma glucose, and glucose AUC after an oral glucose bolus. Significant, dose-dependent reductions of plasma hemoglobin A1c, weight gain, total cholesterol, and triglycerides were also observed in animals receiving KDT501.

Conclusion

These results indicate that KDT501 produces a unique anti-diabetic profile that is distinct in its spectrum of pharmacological effects and biological mechanism from both metformin and pioglitazone. KDT501 may thus constitute a novel therapeutic agent for the treatment of Type 2 diabetes and associated conditions.  相似文献   

8.

Background

Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.

Methodology/Principal Findings

WT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.

Conclusion

We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.  相似文献   

9.

Background

To examine the circulating microRNA (miRNA) expression profile in a mouse model of diet-induced obesity (DIO) with subsequent weight reduction achieved via low-fat diet (LFD) feeding.

Results

Eighteen C57BL/6NCrl male mice were divided into three subgroups: (1) control, mice were fed a standard AIN-76A (fat: 11.5 kcal %) diet for 12 weeks; (2) DIO, mice were fed a 58 kcal % high-fat diet (HFD) for 12 weeks; and (3) DIO + LFD, mice were fed a HFD for 8 weeks to induce obesity and then switched to a 10.5 kcal % LFD for 4 weeks. A switch to LFD feeding led to decreases in body weight, adiposity, and blood glucose levels in DIO mice. Microarray analysis of miRNA using The Mouse & Rat miRNA OneArray® v4 system revealed significant alterations in the expression of miRNAs in DIO and DIO + LFD mice. Notably, 23 circulating miRNAs (mmu-miR-16, mmu-let-7i, mmu-miR-26a, mmu-miR-17, mmu-miR-107, mmu-miR-195, mmu-miR-20a, mmu-miR-25, mmu-miR-15b, mmu-miR-15a, mmu-let-7b, mmu-let-7a, mmu-let-7c, mmu-miR-103, mmu-let-7f, mmu-miR-106a, mmu-miR-106b, mmu-miR-93, mmu-miR-23b, mmu-miR-21, mmu-miR-30b, mmu-miR-221, and mmu-miR-19b) were significantly downregulated in DIO mice but upregulated in DIO + LFD mice. Target prediction and function annotation of associated genes revealed that these genes were predominantly involved in metabolic, insulin signaling, and adipocytokine signaling pathways that directly link the pathophysiological changes associated with obesity and weight reduction.

Conclusions

These results imply that obesity-related reductions in the expression of circulating miRNAs could be reversed through changes in metabolism associated with weight reduction achieved through LFD feeding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1896-3) contains supplementary material, which is available to authorized users.  相似文献   

10.

Context

Plasma total cysteine (tCys) independently relates to fat mass in adults. Dietary cyst(e)ine promotes adiposity and decreases glucose tolerance in some rodent models, but alleviates insulin resistance in others.

Objective

To investigate whether the association of tCys with body fat extends to children at particular risk of obesity, and whether tCys is associated with insulin resistance and obesity-associated inflammation.

Methods

We explored the cross-sectional relations of fasting plasma tCys and related metabolites with body composition measured by dual-energy X-ray absorptiometry in 984 Hispanic children and adolescents aged 4–19 years from the Viva La Familia Study. Linear and logistic regression and dose-response curves were used to evaluate relations of tCys with obesity, insulin resistance and inflammatory markers including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-reactive protein (CRP).

Results

tCys, methionine and total homocysteine (tHcy) increased with age. Upper tCys quartile was independently associated with a 5-fold increased risk of obesity (95% CI 3.5–8.0, P<0.001), and 2-fold risk of insulin resistance (95% CI: 1.6-5.0, P<0.001; adjusted for body fat%). Within the overweight/obese subgroup, but not in normal-weight children, tCys accounted for 9% of the variability in body fat% (partial r = 0.30, P<0.001; adjusted for age and gender). tCys correlated positively with serum non-esterified fatty acids and leptin, partly independent of body fat, but was not associated with serum IL-6, TNF-α or MCP-1. A positive correlation with CRP disappeared after adjustment for BMI.

Conclusion

tCys is independently associated with obesity and insulin resistance in Hispanic children and adolescents, highlighting a previously underappreciated link between the sulfur amino acid metabolic pathway and obesity and cardiometabolic risk.  相似文献   

11.

Background

Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver.

Methodology

Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT) mice fed a high fat diet (HFD), that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 −/−).

Principal Findings

In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 −/− mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 −/− mice.

Conclusion/Significance

These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.  相似文献   

12.

Background

Obesity is considered as a systemic chronic low grade inflammation characterized by increased serum pro-inflammatory proteins and accumulation of macrophages within white adipose tissue (WAT) of obese patients. C5L2, a 7-transmembrane receptor, serves a dual function, binding the lipogenic hormone acylation stimulating protein (ASP), and C5a, involved in innate immunity.

Aim

We evaluated the impact of C5L2 on macrophage infiltration in WAT of wildtype (Ctl) and C5L2 knock-out (C5L2−/−) mice over 6, 12 and 24 weeks on a chow diet and moderate diet-induced obesity (DIO) conditions.

Results

In Ctl mice, WAT C5L2 and C5a receptor mRNA increased (up to 10-fold) both over time and with DIO. By contrast, in C5L2−/−, there was no change in C5aR in WAT. C5L2−/− mice displayed higher macrophage content in WAT, varying by time, fat depot and diet, associated with altered systemic and WAT cytokine patterns compared to Ctl mice. However, in all cases, the M1 (pro-) vs M2 (anti-inflammatory) macrophage proportion was unchanged but C5L2−/− adipose tissue secretome appeared to be more chemoattractant. Moreover, C5L2−/− mice have increased food intake, increased WAT, and altered WAT lipid gene expression, which is reflected systemically. Furthermore, C5L2−/− mice have altered glucose/insulin metabolism, adiponectin and insulin signalling gene expression in WAT, which could contribute to development of insulin resistance.

Conclusion

Disruption of C5L2 increases macrophage presence in WAT, contributing to obesity-associated pathologies, and further supports a dual role of complement in WAT. Understanding this effect of the complement system pathway could contribute to targeting treatment of obesity and its comorbidities.  相似文献   

13.

Background

The development of insulin resistance (IR) in mouse models of obesity and type 2 diabetes mellitus (DM) is characterized by progressive accumulation of inflammatory macrophages and subpopulations of T cells in the visceral adipose. Regulatory T cells (Tregs) may play a critical role in modulating tissue inflammation via their interactions with both adaptive and innate immune mechanisms. We hypothesized that an imbalance in Tregs is a critical determinant of adipose inflammation and investigated the role of Tregs in IR/obesity through coordinated studies in mice and humans.

Methods and Findings

Foxp3-green fluorescent protein (GFP) “knock-in” mice were randomized to a high-fat diet intervention for a duration of 12 weeks to induce DIO/IR. Morbidly obese humans without overt type 2 DM (n = 13) and lean controls (n = 7) were recruited prospectively for assessment of visceral adipose inflammation. DIO resulted in increased CD3+CD4+, and CD3+CD8+ cells in visceral adipose with a striking decrease in visceral adipose Tregs. Treg numbers in visceral adipose inversely correlated with CD11b+CD11c+ adipose tissue macrophages (ATMs). Splenic Treg numbers were increased with up-regulation of homing receptors CXCR3 and CCR7 and marker of activation CD44. In-vitro differentiation assays showed an inhibition of Treg differentiation in response to conditioned media from inflammatory macrophages. Human visceral adipose in morbid obesity was characterized by an increase in CD11c+ ATMs and a decrease in foxp3 expression.

Conclusions

Our experiments indicate that obesity in mice and humans results in adipose Treg depletion. These changes appear to occur via reduced local differentiation rather than impaired homing. Our findings implicate a role for Tregs as determinants of adipose inflammation.  相似文献   

14.
Deng W  Wang X  Xiao J  Chen K  Zhou H  Shen D  Li H  Tang Q 《PloS one》2012,7(1):e30256

Background

The effect of regulator of G protein signaling 5 (RGS5) on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC) or a high-fat diet (HF).

Methodology/Principal Findings

Male, 8-week-old RGS5 knockout (KO) and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBα and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation.

Conclusions/Significance

Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance.  相似文献   

15.

Background

The involvement of muscle triacylglycerol (TAG) storage in the onset of insulin resistance is questioned and the attention has shifted towards inhibition of insulin signalling by the lipid intermediate diacylglycerol (DAG). The enzyme 1,2-acylCoA:diacylglyceroltransferase-1 (DGAT1) esterifies a fatty acyl-CoA on DAG to form TAG. Therefore, the aim of the present study was to investigate if unilateral overexpression of DGAT1 in adult rat Tibialis anterior (TA) muscle will increase conversion of the lipid intermediate DAG into TAG, thereby improving muscle insulin sensitivity.

Methodology/Principal Findings

The DGAT1 gene construct was injected in the left TA muscle of male rats on chow or high-fat (45% kcal) diet for three weeks, followed by application of one 800 V/cm and four 80 V/cm pulses, using the contralateral leg as sham-electroporated control. Seven days after electroporation, muscle specific insulin sensitivity was assessed with a hyperinsulinemic euglycemic clamp using 2-deoxy-[3H]glucose. Here, we provide evidence that unilateral overexpression of DGAT1 in TA muscle of male rats is associated with an increased rather than decreased DAG content. Strikingly, this increase in DAG content was accompanied by improved muscle insulin sensitivity. Interestingly, markers of muscle lipolysis and mitochondrial function were also increased in DGAT1 overexpressing muscle.

Conclusions/Significance

We conclude that unilateral DGAT1 overexpression can rescue insulin sensitivity, possibly by increasing DAG and TAG turnover in skeletal muscle. In case of a proper balance between the supply and oxidation of fatty acids in skeletal muscle, the lipid intermediate DAG may not exert harmful effects on insulin signalling.  相似文献   

16.

Background

It is believed that the endotoxin lipopolysaccharide (LPS) is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia). Here we examined the role of inducible nitric oxide synthase (iNOS) in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia.

Methodology/Principal Findings

Pharmacological (aminoguanidine) and genetic strategies (iNOS−/− mice) were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO) or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation.

Conclusions/Significance

Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.  相似文献   

17.
Li Y  Tong X  Rumala C  Clemons K  Wang S 《PloS one》2011,6(10):e26656

Background

Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.

Methodology/Principal Findings

Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF) or a high-fat (HF) diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.

Conclusion

TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a potential therapeutic target to improve the inflammatory and metabolic complications of obesity.  相似文献   

18.

Aims/hypothesis

Recently, the novel myokine irisin was described to drive adipose tissue ‘browning’, to increase energy expenditure, and to improve obesity and insulin resistance in high fat-fed mice. Here, we assessed whether common single nucleotide polymorphisms (SNPs) in the FNDC5 locus, encoding the irisin precursor, contribute to human prediabetic phenotypes (overweight, glucose intolerance, insulin resistance, impaired insulin release).

Methods

A population of 1,976 individuals was characterized by oral glucose tolerance tests and genotyped for FNDC5 tagging SNPs. Subgroups underwent hyperinsulinaemic-euglycaemic clamps, magnetic resonance imaging/spectroscopy, and intravenous glucose tolerance tests. From 37 young and 14 elderly participants recruited in two different centres, muscle biopsies were obtained for the preparation of human myotube cultures.

Results

After appropriate adjustment and Bonferroni correction for the number of tested variants, SNPs rs16835198 and rs726344 were associated with in vivo measures of insulin sensitivity. Via interrogation of publicly available data from the Meta-Analyses of Glucose and Insulin-related traits Consortium, rs726344’s effect on insulin sensitivity was replicated. Moreover, novel data from human myotubes revealed a negative association between FNDC5 expression and appropriately adjusted in vivo measures of insulin sensitivity in young donors. This finding was replicated in myotubes from elderly men.

Conclusions/interpretation

This study provides evidence that the FNDC5 gene, encoding the novel myokine irisin, determines insulin sensitivity in humans. Our gene expression data point to an unexpected insulin-desensitizing effect of irisin.  相似文献   

19.

Background

Dietary interventions are critical in the prevention of metabolic diseases. Yet, the effects of fatty fish consumption on type 2 diabetes remain unclear. The aim of this study was to investigate whether a diet containing farmed salmon prevents or contributes to insulin resistance in mice.

Methodology/Principal Findings

Adult male C57BL/6J mice were fed control diet (C), a very high-fat diet without or with farmed Atlantic salmon fillet (VHF and VHF/S, respectively), and Western diet without or with farmed Atlantic salmon fillet (WD and WD/S, respectively). Other mice were fed VHF containing farmed salmon fillet with reduced concentrations of persistent organic pollutants (VHF/S-POPs). We assessed body weight gain, fat mass, insulin sensitivity, glucose tolerance, ex vivo muscle glucose uptake, performed histology and immunohistochemistry analysis, and investigated gene and protein expression. In comparison with animals fed VHF and WD, consumption of both VHF/S and WD/S exaggerated insulin resistance, visceral obesity, and glucose intolerance. In addition, the ability of insulin to stimulate Akt phosphorylation and muscle glucose uptake was impaired in mice fed farmed salmon. Relative to VHF/S-fed mice, animals fed VHF/S-POPs had less body burdens of POPs, accumulated less visceral fat, and had reduced mRNA levels of TNFα as well as macrophage infiltration in adipose tissue. VHF/S-POPs-fed mice further exhibited better insulin sensitivity and glucose tolerance than mice fed VHF/S.

Conclusions/Significance

Our data indicate that intake of farmed salmon fillet contributes to several metabolic disorders linked to type 2 diabetes and obesity, and suggest a role of POPs in these deleterious effects. Overall, these findings may participate to improve nutritional strategies for the prevention and therapy of insulin resistance.  相似文献   

20.

Background

Insulin resistance may be assessed as whole body or hepatic.

Objective

To study factors associated with both types of insulin resistance.

Methods

Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound.

Results

The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother''s BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver.

Conclusion

In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号