首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments.  相似文献   

2.
Marine ecosystems are beset by disease outbreaks, and efficient strategies to control dispersal of pathogens are scarce. We tested whether introducing no-farming areas or ‘firebreaks’ could disconnect dispersal networks of a parasitic disease affecting the world’s largest marine fish farming industry (~1000 farms). Larval salmon lice (Lepeophtheirus salmonis) are released from and transported among salmon farms by ocean currents, creating inter-farm networks of louse dispersal. We used a state-of-the-art biophysical model to predict louse movement along the Norwegian coastline and network analysis to identify firebreaks to dispersal. At least one firebreak that fragmented the network into two large unconnected groups of farms was identified for all seasons. During spring, when wild salmon migrate out into the ocean, and louse levels per fish at farms must be minimised, two effective firebreaks were created by removing 13 and 21 farms (1.3% and 2.2% of all farms in the system) at ~61°N and 67°N, respectively. We have demonstrated that dispersal models coupled with network analysis can identify no-farming zones that fragment dispersal networks. Reduced dispersal pathways should lower infection pressure at farms, slow the evolution of resistance to parasite control measures, and alleviate infection pressure on wild salmon populations.  相似文献   

3.
The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2–3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon–louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon–louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.  相似文献   

4.
Methods to prevent parasite infestations in farmed fish are becoming widespread, yet tests of their effectiveness often lack commercial relevance and statistical power, which may lead to technology misuse. Here, we examined salmon louse infestation on Atlantic salmon in triplicate commercial snorkel louse barrier and standard cages over a 12 month production cycle. Barrier cages reduced newly settling lice on Atlantic salmon by 75%, with variability in parasite reduction over time depending upon environmental variables. The commercial, triplicate, long-term study design serves as a template to validate performance and detect weaknesses in anti-parasite techniques in fish mariculture.  相似文献   

5.
The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study’s observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies.  相似文献   

6.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

7.
Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L. salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulence–transmission trade‐off. Our results are relevant in the context of increasing intensive farming, where frequent anti‐parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence.  相似文献   

8.
The aquaculture industry has been dealing with salmon lice problems forming serious threats to salmonid farming. Several treatment approaches have been used to control the parasite. Treatment effectiveness must be optimized, and the systematic genetic differences between subpopulations must be studied to monitor louse species and enhance targeted control measures. We have used IIb‐RAD sequencing in tandem with a random forest classification algorithm to detect the regional genetic structure of the Norwegian salmon lice and identify important markers for sex differentiation of this species. We identified 19,428 single nucleotide polymorphisms (SNPs) from 95 individuals of salmon lice. These SNPs, however, were not able to distinguish the differential structure of lice populations. Using the random forest algorithm, we selected 91 SNPs important for geographical classification and 14 SNPs important for sex classification. The geographically important SNP data substantially improved the genetic understanding of the population structure and classified regional demographic clusters along the Norwegian coast. We also uncovered SNP markers that could help determine the sex of the salmon louse. A large portion of the SNPs identified to be under directional selection was also ranked highly important by random forest. According to our findings, there is a regional population structure of salmon lice associated with the geographical location along the Norwegian coastline.  相似文献   

9.
10.
Fishes farmed in sea pens may become infested by parasites from wild fishes and in turn become point sources for parasites. Sea lice, copepods of the family Caligidae, are the best-studied example of this risk. Sea lice are the most significant parasitic pathogen in salmon farming in Europe and the Americas, are estimated to cost the world industry €300 million a year and may also be pathogenic to wild fishes under natural conditions.Epizootics, characteristically dominated by juvenile (copepodite and chalimus) stages, have repeatedly occurred on juvenile wild salmonids in areas where farms have sea lice infestations, but have not been recorded elsewhere. This paper synthesizes the literature, including modelling studies, to provide an understanding of how one species, the salmon louse, Lepeophtheirus salmonis, can infest wild salmonids from farm sources. Three-dimensional hydrographic models predicted the distribution of the planktonic salmon lice larvae best when they accounted for wind-driven surface currents and larval behaviour. Caligus species can also cause problems on farms and transfer from farms to wild fishes, and this genus is cosmopolitan. Sea lice thus threaten finfish farming worldwide, but with the possible exception of L. salmonis, their host relationships and transmission adaptations are unknown. The increasing evidence that lice from farms can be a significant cause of mortality on nearby wild fish populations provides an additional challenge to controlling lice on the farms and also raises conservation, economic and political issues about how to balance aquaculture and fisheries resource management.  相似文献   

11.
The sigma virus (DMelSV), which is a natural pathogen of Drosophila melanogaster, is the only Drosophila-specific rhabdovirus that has been described. We have discovered two new rhabdoviruses, D. obscura and D. affinis, which we have named DObsSV and DAffSV, respectively. We sequenced the complete genomes of DObsSV and DMelSV, and the L gene from DAffSV. Combining these data with sequences from a wide range of other rhabdoviruses, we found that the three sigma viruses form a distinct clade which is a sister group to the Dimarhabdovirus supergroup, and the high levels of divergence between these viruses suggest that they deserve to be recognized as a new genus. Furthermore, our analysis produced the most robustly supported phylogeny of the Rhabdoviridae to date, allowing us to reconstruct the major transitions that have occurred during the evolution of the family. Our data suggest that the bias towards research into plants and vertebrates means that much of the diversity of rhabdoviruses has been missed, and rhabdoviruses may be common pathogens of insects.  相似文献   

12.
13.
Exocrine glands of blood‐feeding parasitic copepods are believed to be important in host immune response modulation and inhibition of host blood coagulation, but also in the production of substances for integument lubrication and antifouling. In this study, we aimed to characterize the distribution of different types of salmon louse (Lepeophtheirus salmonis) exocrine glands and their site of secretion. The developmental appearance of each gland type was mapped and genes specifically expressed by glands were identified. Three types of tegumental (teg 1–3) glands and one labial gland type were found. The first glands to appear during development were teg 1 and teg 2 glands. They have ducts extending both dorsally and ventrally suggested to be important in lubricating the integument. Teg 1 glands were found to express two astacin metallopeptidases and a gene with fibronectin II domains, while teg 2 glands express a heme peroxidase. The labial glands were first identified in planktonic copepodids, with reservoirs that allows for storage of glandular products. The last gland type to appear during development was named teg 3 and was not seen before the preadult I stage when the lice become more virulent. Teg 3 glands have ducts ending ventrally at the host‐parasite contact area, and may secrete substances important for the salmon lice virulence. Salmon lice teg 3 and labial glands are thus likely to be especially important in the host‐parasite interaction. Proteins secreted from the salmon louse glands to its salmonid host skin or blood represents a potential interface where the host immune system can meet and elicit effective responses to sea lice antigens. The present study thus represents a fundamental basis for further functional studies and identification of possible vaccine candidates. J. Morphol. 277:1616–1630, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
To better understand the role of vector transmission of aquatic viruses, we established an in vivo virus-parasite challenge specifically to address (1) whether Lepeophtheirus salmonis can acquire infectious haematopoietic necrosis virus (IHNV) after water bath exposure or via parasitizing infected Atlantic salmon Salmo salar and if so, define the duration of this association and (2) whether L. salmonis can transmit IHNV to naive Atlantic salmon and whether this transmission requires attachment to the host. Salmon lice which were water bath-exposed to 1 x 10(5) plaque-forming units (pfu) ml(-1) of IHNV for 1 h acquired the virus (2.1 x 10(4) pfu g(-1)) and remained IHNV-positive for 24 h post exposure. After parasitizing IHNV-infected hosts (viral titer in fish mucus 3.3 x 10(4) pfu ml(-1)) salmon lice acquired IHNV (3.4 x 10(3) pfu g(-1)) and remained virus-positive for 12 h. IHNV-positive salmon lice generated through water bath exposure or after parasitizing infected Atlantic salmon successfully transmitted IHNV, resulting in 76.5 and 86.6% of the exposed Atlantic salmon testing positive for IHNV, respectively. In a second experiment, only salmon lice that became IHNV-positive through water bath exposure transmitted IHNV to 20% of the naive fish, and no virus was transmitted when IHNV-infected salmon lice were cohabitated but restrained from attaching to naive fish. Under laboratory conditions, adult L. salmonis can acquire IHNV and transmit it to naive Atlantic salmon through parasitism. However, the ephemeral association of IHNV with L. salmonis indicates that the salmon louse act as a mechanical rather than a biological vector or reservoir.  相似文献   

15.
Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host–parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources.  相似文献   

16.
Salmon lice Lepeophtheirus salmonis Kr?yer have caused disease problems in farmed Atlantic salmon Salmo salar L. since the mid-1970s in Norway. High infection intensities and premature return of wild sea trout Salmo trutta L. were first reported in 1992. Later emaciated wild Atlantic salmon smolts carrying large amounts of lice have been observed both in fjords and offshore. The Norwegian Animal Health Authority regulations to control the problem, which came into operation in 1998, included compulsory louse level monitoring in farms and maximum legal numbers of lice per fish. Here, we present a model of salmon louse egg production in Norway and show that the effect of the current public management strategy is critically dependent on the yearly increase in salmon production. This is because the infection pressure is the product of the number of fish in the system, and the number of lice per fish. Due to the much larger number of farmed than wild salmonids, it is highly likely that lice originating from farmed salmon infect wild stock. Estimated tolerance limits for wild salmonids vary widely, and the level of louse egg production in farms which would be needed to decimate wild populations is not known. Two possible thresholds for total lice egg production are investigated: (1) 1986 to 1987 level (i.e. before adverse effects on sea trout were recorded), and (2) a level corresponding to a doubling of the estimated natural infection pressure. The farm lice per fish limits that would have to be observed to keep louse production within the 2 thresholds are calculated for the period 1986 to 2005. A steady decrease in the permitted number of lice per fish may keep the total louse production stable, but the number of salmon required for verification of lice numbers will increase as the prevalence to be verified is decreased. At threshold (2), the model estimated that lice limits should have been 0.05 louse per fish in 1999. This would require 60 fish from each pen to be collected, anaesthetised and examined for a good estimate at a confidence level of 95%. Such sample numbers are likely to be opposed by farmers. The use of national delousing programs to solve the problem is discussed.  相似文献   

17.
ABSTRACT. Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life‐cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle‐I) and in the nuclei of epidermal cells (Cycle‐II), respectively. Cycle‐I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle‐II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus.  相似文献   

18.
19.
Sea lice are common parasites of both farmed and wild salmon. Salmon farming constitutes an important economic market in North America, South America, and Northern Europe. Infections with sea lice can result in significant production losses. A compilation of genomic information on different genera of sea lice is an important resource for understanding their biology as well as for the study of population genetics and control strategies. We report on over 150,000 expressed sequence tags (ESTs) from five different species (Pacific Lepeophtheirus salmonis (49,672 new ESTs in addition to 14,994 previously reported ESTs), Atlantic L. salmonis (57,349 ESTs), Caligus clemensi (14,821 ESTs), Caligus rogercresseyi (32,135 ESTs), and Lernaeocera branchialis (16,441 ESTs)). For each species, ESTs were assembled into complete or partial genes and annotated by comparisons to known proteins in public databases. In addition, whole mitochondrial (mt) genome sequences of C. clemensi (13,440 bp) and C. rogercresseyi (13,468 bp) were determined and compared to L. salmonis. Both nuclear and mtDNA genes show very high levels of sequence divergence between these ectoparastic copepods suggesting that the different species of sea lice have been in existence for 37–113 million years and that parasitic association with salmonids is also quite ancient. Our ESTs and mtDNA data provide a novel resource for the study of sea louse biology, population genetics, and control strategies. This genomic information provides the material basis for the development of a 38K sea louse microarray that can be used in conjunction with our existing 44K salmon microarray to study host–parasite interactions at the molecular level. This report represents the largest genomic resource for any copepod species to date.  相似文献   

20.
Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km fjord system and had, thus, entered the ocean when the more pathogenic pre-adult and adult lice stages developed. The brown trout, in comparison to Atlantic salmon, remained to a larger extent than Atlantic salmon in the inner part of the fjord system. No effect of salmon lice infection, or protection, was found in brown trout during the first weeks of their fjord migration. Brown trout will, to a larger extent than Atlantic salmon, stay in the fjord areas when salmon lice infections reach the more pathogenic pre-adult and adult stages. In contrast to Atlantic salmon, they will thereby possess the practical capability of returning to freshwater when encountering severe salmon lice attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号