首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a consanguineous family with progressive myoclonus epilepsy (PME) was clinically examined and molecularly investigated to determine the molecular events causing disease. Since exclusion of known genes indicated that novel genes causing PME still remained unidentified, homozygosity mapping, exome sequencing, as well as validation and disease-segregation analyses were subsequently carried out for both loci and gene identification. To further assure our results, a muscle biopsy and gene expression analyses were additionally performed. As a result, a homozygous, disease-segregating COL6A2 mutation, p.Asp215Asn, absent in a large number of control individuals, including control individuals of Iranian ancestry, was identified in both affected siblings. COL6A2 was shown to be expressed in the human cerebral cortex and muscle biopsy revealed no specific histochemical pathology. We conclude that the COL6A2 p.Asp215Asn mutation is likely to be responsible for PME in this family; however, additional studies are warranted to further establish the pathogenic role of both COL6A2 and the extracellular proteolysis system in the pathogenesis of PME.  相似文献   

2.
We used a combined approach of homozygosity mapping and whole exome sequencing (WES) to search for the genetic cause of autosomal recessive retinitis pigmentosa (arRP) in families of Yemenite Jewish origin. Homozygosity mapping of two arRP Yemenite Jewish families revealed a few homozygous regions. A subsequent WES analysis of the two index cases revealed a shared homozygous novel nucleotide deletion (c.1220delG) leading to a frameshift (p.Gly407Glufs*56) in an alternative exon (#15) of USH1C. Screening of additional Yemenite Jewish patients revealed a total of 16 homozygous RP patients (with a carrier frequency of 0.008 in controls). Funduscopic and electroretinography findings were within the spectrum of typical RP. While other USH1C mutations usually cause Usher type I (including RP, vestibular dysfunction and congenital deafness), audiometric screening of 10 patients who are homozygous for c.1220delG revealed that patients under 40 years of age had normal hearing while older patients showed mild to severe high tone sensorineural hearing loss. This is the first report of a mutation in a known USH1 gene that causes late onset rather than congenital sensorineural hearing loss. The c.1220delG mutation of USH1C accounts for 23% of RP among Yemenite Jewish patients in our cohort.  相似文献   

3.
Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL.  相似文献   

4.
Familial hypercholesterolemia is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). It is mainly caused by mutations of the low-density lipoprotein receptor (LDLR) gene. Currently, the methods of whole genome sequencing or whole exome sequencing for screening mutations in familial hypercholesterolemia are not applicable in China due to high cost. We performed targeted exome sequencing of 167 genes implicated in the homozygous phenotype of a proband pedigree to identify candidate mutations, validated them in the family of the proband, studied the functions of the mutant protein, and followed up serum lipid levels after treatment. We discovered that exon 9 c.1268 T>C and exon 8 c.1129 T>G compound heterozygous mutations in the LDLR gene in the proband derived from the mother and father, respectively, in which the mutation of c.1129 T>G has not been reported previously. The mutant LDL-R protein had 57% and 52% binding and internalization functions, respectively, compared with that of the wild type. After 6 months of therapy, the LDL-C level of the proband decreased by more than 50% and the LDL-C of the other family members with heterozygous mutation also reduced to normal. Targeted exome sequencing is an effective method for screening mutation genes in familial hypercholesterolemia. The exon 8 and 9 mutations of the LDLR gene were pedigree mutations. The functions of the mutant LDL-R protein were decreased significantly compared with that of the wild type. Simvastatin plus ezetimibe was proven safe and effective in this preschool-age child.  相似文献   

5.
Primary microcephaly (MCPH) is a rare developmental defect characterized by impaired cognitive functions, retarded neurodevelopment and reduced brain size. It is genetically heterogeneous and so far more than 17 genes associated with this disease have been identified. Primary microcephaly type 1 (MCPH1) gene encodes a protein called microcephalin, which is implicated in chromosome condensation and DNA damage induced cellular responses. It is suggested to play a role in neurogenesis and regulation of the size of the cerebral cortex. Whole exome sequencing revealed a novel, homozygous frameshift mutation (c.373_374delAA) in MCPH1 gene in exon 5 resulting in frameshift change from p.Lys125Glusfs*7. Our report presents the results of the simultaneous analysis of the trio exome data of both unaffected parents and their affected son. A homozygous frameshift variant in the MCPH1 gene was identified as a plausible candidate causal variant for the clinical phenotype in this family.  相似文献   

6.
Intellectual developmental disorder with abnormal behavior, microcephaly and short stature (IDDABS), (OMIM# 618342) is an autosomal recessive condition described as developmental delay, poor or absent speech, intellectual disability, short stature, mild to progressive microcephaly, delayed psychomotor development, hyperactivity, seizure, along with mild to swear aggressive behavior. Homozygous frameshift mutation in Pseudouridine Synthase 7, Putative; (PUS7) OMIM# 616,261 NM_019042.3 and splice acceptor variants in Alpha-Aminoadipic Semialdehyde Synthase; (AASS) OMIM# 605,113 NM_005763.3 was funded. Whole exome sequencing (WES) technique was used as tool to identify the molecular diagnostic test. Different bioinformatics analysis done for WES data and we identified two novel mutations one as frameshift mutation c.606_607delGA, p.Ser282CysfsTer9 in the PUS7 gene and splice acceptor variants c.1767–1 G > A in the AASS gene has been reported. The pattern of family segregation maintained the pathogenicity of this variation associated with abnormal behavior, intellectual developmental disorder, microcephaly along with short stature IDDABS. Further, the WES data was validated in the family having other affected individuals and healthy controls (n = 100) was done using Sanger sequencing. Finally, our results further explained the role of WES in the disease diagnosis and elucidated that the mutation in PUS7 and AASS genes may lead an important role for the development of IDDABS in Saudi family.  相似文献   

7.
Usher syndrome encompasses a group of genetically and clinically heterogeneous autosomal recessive disorders with hearing deficiencies and retinitis pigmentosa. The mechanisms underlying the Usher syndrome are highly variable. In the present study, a Chinese family with Usher syndrome was recruited. Whole exome sequencing (WES), Sanger sequencing, homozygosity mapping, short tandem repeat (STR) analysis and segregation analysis were performed. Functional domains of the pathogenic variant for USH2A were analysed. We identified a homozygous frameshift variant c.99_100insT (p.Arg34Serfs*41) in the USH2A gene in the proband that showed discordant segregation in the father. Further homozygosity mapping and STR analysis identified an unusual homozygous variant of proband that originated from maternal uniparental disomy (UPD). The p.Arg34Serfs*41 variant produced a predicted truncated protein that removes all functional domains of USH2A. The variant was not included in the 1000 Human Genomes Project database, ExAC database, HGMD or gnomAD database, but was included in the ClinVar databases as pathogenic. Although USH2A is an autosomal recessive disease, the effects of UPD should be informed in genetic counselling since the recurrence risk of an affected child is greatly reduced when the disease is due to the UPD mechanism. To test potential patients, WES, combined with STR analysis and homozygosity mapping, provides an accurate and useful strategy for genetic diagnosis. In summary, our discoveries can help further the understanding of the molecular pathogenesis of Usher syndrome type IIA to advance the prevention, diagnosis and therapy for this disorder.  相似文献   

8.
RTTN (Rotatin) (OMIM 614833) is a large centrosomal protein coding gene. RTTN mutations are responsible for syndromic forms of malformation of brain development, leading to polymicrogyria, microcephaly, primordial dwarfism, seizure along with many other malformations. In this study we have identified a compound heterozygous mutation in RTTN gene having NM_173630 c.5225A > G p.His1742Arg in exon 39 and NM_173630 c.6038G > T p.Cys2013Phe in exon 45 of a consanguineous Saudi family leading to brain malformation, seizure, developmental delay, dysmorphic feature and microcephaly. Whole exome sequencing (WES) techniques was used to identify the causative mutation in the affected members of the family. WES data analysis was done and obtained data were further confirmed by using Sanger sequencing analysis. Moreover, the mutation was ruled out in 100 healthy control from normal population. To the best of our knowledge the novel compound heterozygous mutation observed in this study is the first report from Saudi Arabia. The identified compound heterozygous mutation will further explain the role of RTTN gene in development of microcephaly and neurodevelopmental disorders.  相似文献   

9.
Fanconi anemia is a rare genetic disease characterized by bone marrow failure, multiple congenital malformations, and an increased susceptibility to malignancy. At least 15 genes have been identified that are involved in the pathogenesis of Fanconi anemia. However, it is still a challenge to assign the complementation group and to characterize the molecular defects in patients with Fanconi anemia. In the current study, whole exome sequencing was used to identify the affected gene(s) in a boy with Fanconi anemia. A recurring, non-synonymous mutation was found (c.3971C>T, p.P1324L) as well as a novel frameshift mutation (c.989_995del, p.H330LfsX2) in FANCA gene. Our results indicate that whole exome sequencing may be useful in clinical settings for rapid identification of disease-causing mutations in rare genetic disorders such as Fanconi anemia.  相似文献   

10.
Background:Junctional epidermolysis bullosa (JEB) is an autosomal recessive skin disorder with defective adhesion of dermal- epidermal within the lamina lucida region of the basement membrane zone. The main characterization of JEB is blistering and fragile skin and mucous membrane. Laminins are noncollagenous part of basement membrane and classified as a family of extracellular matrix glycoprotein. Laminins contain three chains: Laminin α, Laminin β and Laminin γ. LAMC2 (laminin subunit gamma 2) gene encodes γ subunit of laminin and its mutation contributes to JEB. Here, we report a disease-causing nonsense mutation and a large deletion mutation in LAMC2 gene in two families affected by JEB.Methods:Whole exome sequencing (WES) was carried out on the mother of patient in family I and the patient himself in family II to detect the underlying mutations. Then, sanger sequencing was performed to confirm the identified mutations.Results:Next generation sequencing (NGS) data analysis of the first family showed a novel, nonsense mutation in LAMC2 gene (LAMC2: NM_005562: exon14:c.C2143T: p.R715X). The heterozygous state of the mutation was confirmed by sanger sequencing in the parents and unaffected brother. In Family II, NGS data had no coverage in the large area of LAMC2 gene. Thus, to confirm the possible deletion sanger sequencing was done and blasting of sequence showed the deleted region of 9.4 kb (exon10-17) in LAMC2 gene.Conclusion:In summary, current study reported a novel disease-causing premature termination codon (PTC) mutation in LAMC2 gene and a large deletion mutation in patients affected by JEB.Key Words: Junctional Epidermolysis Bullosa, LAMC2 gene, Novel mutation, Skin disorder  相似文献   

11.
The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals.  相似文献   

12.
Leber congenital amaurosis (LCA) is a heterogeneous, early‐onset inherited retinal dystrophy, which is associated with severe visual impairment. We aimed to determine the disease‐causing variants in Iranian LCA and evaluate the clinical implications. Clinically, a possible LCA disease was found through diagnostic imaging, such as fundus photography, autofluorescence and optical coherence tomography. All affected patients showed typical eye symptoms associated with LCA including narrow arterioles, blindness, pigmentary changes and nystagmus. Target exome sequencing was performed to analyse the proband DNA. A homozygous novel c. 2889delT  (p.P963 fs) mutation in the RPGRIP1 gene was identified, which was likely the deleterious and pathogenic mutation in the proband. Structurally, this mutation lost a retinitis pigmentosa GTPase regulator (RPGR)‐interacting domain at the C‐terminus which most likely impaired stability in the RPGRIP1 with the distribution of polarised proteins in the cilium connecting process. Sanger sequencing showed complete co‐segregation  in this pedigree. This study provides compelling evidence that the c. 2889delT  (p.P963 fs) mutation in the RPGRIP1 gene works as a pathogenic mutation that contributes to the progression of LCA.  相似文献   

13.
目的:研究探讨一CADASIL家系的临床特征及基因突变情况。方法:收集同一家系中3例CADASIL患者的临床资料,并对3例患者及先证者之兄进行全外显子测序(Whole Exome Sequencing, WES)。结果:该家系中3例患者临床表现多样,女性患者均有头痛病史,先证者及先证者之姐中年起病,先证者临床表现缺乏特异性,主要表现为头昏,认知功能检查正常,心理评估示轻度焦虑抑郁状态。先证者之姐主要表现为假性球麻痹及锥体束受损,认知功能检查示重度痴呆。先证者之女自4岁起诊断为癫痫-失神发作,认知功能检查示轻度认知功能障碍。影像学显示该家系3例患者均有脑白质病变,且随着年龄增大呈进行性发展,WES显示3例患者均存在NOTCH3基因第4外显子区域杂合突变:c.520T>G,导致氨基酸改变p.Cys174Gly。结论:NOTCH3基因c.520T>G所致该家系的临床表现具有多样性,且该家系中下一代起病较早,临床表现可与父代具有较大异质性,影像学表现可在青少年时期出现,并呈现进行加重的趋势。WES显示该家系中NOTCH3基因突变为第4外显子的杂合突变,该位点突变致CADASIL为国内首次报道。  相似文献   

14.
Dystrophic epidermolysis bullosa is an inherited bullous dermatosis caused by the COL7A1 gene mutation in autosomal dominant or recessive mode. COL7A1 gene encodes type VII collagen – the main component of the anchoring fibrils at the dermal–epidermal junction. Besides the 730 mutations reported, we identified two novel COL7A1 gene mutations in a Chinese family, which caused recessive dystrophic epidermolysis bullosa (RDEB). The diagnosis was established histopathologically and ultrastructurally. After genomic DNA extraction from the peripheral blood sample of all subjects (5 pedigree members and 136 unrelated control individuals), COL7A1 gene screening was performed by polymerase chain reaction amplification and direct DNA sequencing of the whole coding exons and flanking intronic regions. Genetic analysis of the COL7A1 gene in affected individuals revealed compound heterozygotes with identical novel mutations. The maternal mutation is a 2-bp deletion at exon 8 (c.1006_1007delCA), leading to a subsequent reading frame-shift and producing a premature termination codon located 48 amino acids downstream in exon 9 (p.Q336EfsX48), consequently resulting in the truncation of 2561 amino acids downstream. This was only present in two affected brothers, but not in the other unaffected family members. The paternal mutation is a 1-bp deletion occurring at the first base of intron 65 (c.IVS5568+1delG) that deductively changes the strongly conserved GT dinucleotide at the 5′ donor splice site, results in subsequent reading-through into intron 65, and creates a stop codon immediately following the amino acids encoded by exon 65 (GTAA→TAA). This is predicted to produce a truncated protein lacking of 1089 C-terminal amino acids downstream. The latter mutation was found in all family members except one of the two unaffected sisters. Both mutations were observed concurrently only in the two affected brothers. Neither mutation was discovered in 136 unrelated Chinese control individuals. This study reveals novel disease-causing mutations in the COL7A1 gene.  相似文献   

15.

Objective

The purpose of this study was to investigate frequent disease-causing gene mutations in autosomal recessive retinitis pigmentosa (arRP) in the Japanese population.

Methods

In total, 99 Japanese patients with non-syndromic and unrelated arRP or sporadic RP (spRP) were recruited in this study and ophthalmic examinations were conducted for the diagnosis of RP. Among these patients, whole exome sequencing analysis of 30 RP patients and direct sequencing screening of all CNGA1 exons of the other 69 RP patients were performed.

Results

Whole exome sequencing of 30 arRP/spRP patients identified disease-causing gene mutations of CNGA1 (four patients), EYS (three patients) and SAG (one patient) in eight patients and potential disease-causing gene variants of USH2A (two patients), EYS (one patient), TULP1 (one patient) and C2orf71 (one patient) in five patients. Screening of an additional 69 arRP/spRP patients for the CNGA1 gene mutation revealed one patient with a homozygous mutation.

Conclusions

This is the first identification of CNGA1 mutations in arRP Japanese patients. The frequency of CNGA1 gene mutation was 5.1% (5/99 patients). CNGA1 mutations are one of the most frequent arRP-causing mutations in Japanese patients.  相似文献   

16.

Background

Accurate molecular diagnosis of monogenic non-autoimmune neonatal diabetes mellitus (NDM) is critical for patient care, as patients carrying a mutation in KCNJ11 or ABCC8 can be treated by oral sulfonylurea drugs instead of insulin therapy. This diagnosis is currently based on Sanger sequencing of at least 42 PCR fragments from the KCNJ11, ABCC8, and INS genes. Here, we assessed the feasibility of using the next-generation whole exome sequencing (WES) for the NDM molecular diagnosis.

Methodology/Principal Findings

We carried out WES for a patient presenting with permanent NDM, for whom mutations in KCNJ11, ABCC8 and INS and abnormalities in chromosome 6q24 had been previously excluded. A solution hybridization selection was performed to generate WES in 76 bp paired-end reads, by using two channels of the sequencing instrument. WES quality was assessed using a high-resolution oligonucleotide whole-genome genotyping array. From our WES with high-quality reads, we identified a novel non-synonymous mutation in ABCC8 (c.1455G>C/p.Q485H), despite a previous negative sequencing of this gene. This mutation, confirmed by Sanger sequencing, was not present in 348 controls and in the patient''s mother, father and young brother, all of whom are normoglycemic.

Conclusions/Significance

WES identified a novel de novo ABCC8 mutation in a NDM patient. Compared to the current Sanger protocol, WES is a comprehensive, cost-efficient and rapid method to identify mutations in NDM patients. We suggest WES as a near future tool of choice for further molecular diagnosis of NDM cases, negative for chr6q24, KCNJ11 and INS abnormalities.  相似文献   

17.
The SNRNP200 gene encodes hBrr2, a helicase essential for pre-mRNA splicing. Six mutations in SNRNP200 have recently been discovered to be associated with autosomal dominant retinitis pigmentosa (adRP). In this work, we analyzed a Chinese family with adRP and identified a novel missense mutation in SNRNP200. To identify the genetic defect in this family, exome of the proband was captured and sequencing analysis was performed to exclude known genetic defects and find possible pathogenic mutations. Subsequently, candidate mutations were validated in affected family members using Sanger sequencing. A novel missense mutation, c.2653C>G transition (p.Q885E), in exon 20 of SNRNP200 was identified. The mutation co-segregated with the disease phenotype over four generations and was absent in 100 normal unaffected individuals. This mutation occurs at highly conserved position in hBrr2 and is predicted to have a functional impact, suggesting that hBrr2-dependent small nuclear riboproteins (snRNPs) unwinding and spliceosome activation is important in the pathogenesis of some variants of RP.  相似文献   

18.
Monogenic diabetes is caused by mutations that reduce β-cell function. While Sanger sequencing is the standard method used to detect mutated genes. Next-generation sequencing techniques, such as whole exome sequencing (WES), can be used to find multiple gene mutations in one assay. We used WES to detect genetic mutations in both permanent neonatal (PND) and type 1B diabetes (T1BD).A total of five PND and nine T1BD patients were enrolled in this study. WES variants were assessed using VarioWatch, excluding those identified previously. Sanger sequencing was used to confirm the mutations, and their pathogenicity was established via the literature or bioinformatic/functional analysis. The PND and T1BD patients were diagnosed at 0.1–0.5 and 0.8–2.7?years of age, respectively. Diabetic ketoacidosis was present at diagnosis in 60% of PND patients and 44.4% of T1BD patients. We found five novel mutations in five different genes. Notably, patient 602 had a novel homozygous missense mutation c.1295C?>?A (T432?K) in the glucokinase (GCK) gene. Compared to the wild-type recombinant protein, the mutant protein had significantly lower enzymatic activity (2.5%, p?=?0.0002) and Vmax (1.23?±?0.019 vs. 0.33?±?0.016, respectively; p?=?0.005). WES is a robust technique that can be used to unravel the etiologies of genetically heterogeneous forms of diabetes. Homozygous inactivating mutations of the GCK gene may have a significant role in PND pathogenesis.  相似文献   

19.
In this study, we have performed autozygosity mapping on a large consanguineous Pakistani family segregating with intellectual disability. We identified two large regions of homozygosity-by-descent (HBD) on 16q12.2–q21 and 16q24.1–q24.3. Whole exome sequencing (WES) was performed on an affected individual from the family, but initially, no obvious mutation was detected. However, three genes within the HBD regions that were not fully captured during the WES were Sanger sequenced and we identified a five base pair deletion (actually six base pairs deleted plus one base pair inserted) in exon 7 of the gene FBXO31. The variant segregated completely in the family, in recessive fashion giving a LOD score of 3.95. This variant leads to a frameshift and a premature stop codon and truncation of the FBXO31 protein, p.(Cys283Asnfs*81). Quantification of mRNA and protein expression suggests that nonsense-mediated mRNA decay also contributes to the loss of FBXO31 protein in affected individuals. FBXO31 functions as a centrosomal E3 ubiquitin ligase, in association with SKP1 and Cullin-1, involved in ubiquitination of proteins targeted for degradation. The FBXO31/SKP1/Cullin1 complex is important for neuronal morphogenesis and axonal identity. FBXO31 also plays a role in dendrite growth and neuronal migration in developing cerebellar cortex. Our finding adds further evidence of the involvement of disruption of the protein ubiquitination pathway in intellectual disability.  相似文献   

20.
To date, three different structural gene mutations have been identified in patients with carbonic anhydrase II deficiency (osteopetrosis with renal tubular acidosis and cerebral calcification). These include a missense mutation (H107Y) in two families, a splice junction mutation in intron 5 in one of these families, and a splice junction mutation in intron 2 for which many Arabic patients are homozygous. We report here a novel mutation for which carbonic anhydrase II-deficient patients from seven unrelated Hispanic families were found to be homozygous. The proband was a 2 1/2-year-old Hispanic girl of Puerto Rican ancestry who was unique clinically, in that she had no evidence of renal tubular acidosis, even though she did have osteopetrosis, developmental delay, and cerebral calcification. She proved to be homozygous for a single-base deletion in the coding region of exon 7 that produces a frameshift that changes the next 12 amino acids before leading to chain termination and that also introduces a new MaeIII restriction site. The 27-kD truncated enzyme produced when the mutant cDNA was expressed in COS cells was enzymatically inactive, present mainly in insoluble aggregates, and detectable immunologically at only 5% the level of the 29-kD normal carbonic anhydrase II expressed from the wild-type cDNA. Metabolic labeling revealed that this 27-kD mutant protein has an accelerated rate of degradation. Six subsequent Hispanic patients of Caribbean ancestry, all of whom had osteopetrosis and renal tubular acidosis but who varied widely in clinical severity, were found to be homozygous for the same mutation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号