首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

RNA-protein interactions are important for a wide range of biological processes. Current computational methods to predict interacting residues in RNA-protein interfaces predominately rely on sequence data. It is, however, known that interface residue propensity is closely correlated with structural properties. In this paper we systematically study information obtained from sequences and structures and compare their contributions in this prediction problem. Particularly, different geometrical and network topological properties of protein structures are evaluated to improve interface residue prediction accuracy.  相似文献   

2.
The physico-chemical properties of interaction interfaces have a crucial role in characterization of protein–protein interactions (PPI). In silico prediction of participating amino acids helps to identify interface residues for further experimental verification using mutational analysis, or inhibition studies by screening library of ligands against given protein. Given the unbound structure of a protein and the fact that it forms a complex with another known protein, the objective of this work is to identify the residues that are involved in the interaction. We attempt to predict interaction sites in protein complexes using local composition of amino acids together with their physico-chemical characteristics. The local sequence segments (LSS) are dissected from the protein sequences using a sliding window of 21 amino acids. The list of LSSs is passed to the support vector machine (SVM) predictor, which identifies interacting residue pairs considering their inter-atom distances. We have analyzed three different model organisms of Escherichia coli, Saccharomyces Cerevisiae and Homo sapiens, where the numbers of considered hetero-complexes are equal to 40, 123 and 33 respectively. Moreover, the unified multi-organism PPI meta-predictor is also developed under the current work by combining the training databases of above organisms. The PPIcons interface residues prediction method is measured by the area under ROC curve (AUC) equal to 0.82, 0.75, 0.72 and 0.76 for the aforementioned organisms and the meta-predictor respectively.  相似文献   

3.
Ahmad S  Mizuguchi K 《PloS one》2011,6(12):e29104
Computational prediction of residues that participate in protein-protein interactions is a difficult task, and state of the art methods have shown only limited success in this arena. One possible problem with these methods is that they try to predict interacting residues without incorporating information about the partner protein, although it is unclear how much partner information could enhance prediction performance. To address this issue, the two following comparisons are of crucial significance: (a) comparison between the predictability of inter-protein residue pairs, i.e., predicting exactly which residue pairs interact with each other given two protein sequences; this can be achieved by either combining conventional single-protein predictions or making predictions using a new model trained directly on the residue pairs, and the performance of these two approaches may be compared: (b) comparison between the predictability of the interacting residues in a single protein (irrespective of the partner residue or protein) from conventional methods and predictions converted from the pair-wise trained model. Using these two streams of training and validation procedures and employing similar two-stage neural networks, we showed that the models trained on pair-wise contacts outperformed the partner-unaware models in predicting both interacting pairs and interacting single-protein residues. Prediction performance decreased with the size of the conformational change upon complex formation; this trend is similar to docking, even though no structural information was used in our prediction. An example application that predicts two partner-specific interfaces of a protein was shown to be effective, highlighting the potential of the proposed approach. Finally, a preliminary attempt was made to score docking decoy poses using prediction of interacting residue pairs; this analysis produced an encouraging result.  相似文献   

4.
Liu R  Hu J 《PloS one》2011,6(10):e25560
Computational identification of heme-binding residues is beneficial for predicting and designing novel heme proteins. Here we proposed a novel method for heme-binding residue prediction by exploiting topological properties of these residues in the residue interaction networks derived from three-dimensional structures. Comprehensive analysis showed that key residues located in heme-binding regions are generally associated with the nodes with higher degree, closeness and betweenness, but lower clustering coefficient in the network. HemeNet, a support vector machine (SVM) based predictor, was developed to identify heme-binding residues by combining topological features with existing sequence and structural features. The results showed that incorporation of network-based features significantly improved the prediction performance. We also compared the residue interaction networks of heme proteins before and after heme binding and found that the topological features can well characterize the heme-binding sites of apo structures as well as those of holo structures, which led to reliable performance improvement as we applied HemeNet to predicting the binding residues of proteins in the heme-free state. HemeNet web server is freely accessible at http://mleg.cse.sc.edu/hemeNet/.  相似文献   

5.
Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by comparing various RIG definitions against a series of network models.  相似文献   

6.
Protein-protein interactions play an essential role in the functioning of cell. The importance of charged residues and their diverse role in protein-protein interactions have been well studied using experimental and computational methods. Often, charged residues located in protein interaction interfaces are conserved across the families of homologous proteins and protein complexes. However, on a large scale, it has been recently shown that charged residues are significantly less conserved than other residue types in protein interaction interfaces. The goal of this work is to understand the role of charged residues in the protein interaction interfaces through their conservation patterns. Here, we propose a simple approach where the structural conservation of the charged residue pairs is analyzed among the pairs of homologous binary complexes. Specifically, we determine a large set of homologous interactions using an interaction interface similarity measure and catalog the basic types of conservation patterns among the charged residue pairs. We find an unexpected conservation pattern, which we call the correlated reappearance, occurring among the pairs of homologous interfaces more frequently than the fully conserved pairs of charged residues. Furthermore, the analysis of the conservation patterns across different superkingdoms as well as structural classes of proteins has revealed that the correlated reappearance of charged residues is by far the most prevalent conservation pattern, often occurring more frequently than the unconserved charged residues. We discuss a possible role that the new conservation pattern may play in the long-range electrostatic steering effect.  相似文献   

7.
A methodological framework is presented for the graph theoretical interpretation of NMR data of protein interactions. The proposed analysis generalizes the idea of network representations of protein structures by expanding it to protein interactions. This approach is based on regularization of residue‐resolved NMR relaxation times and chemical shift data and subsequent construction of an adjacency matrix that represents the underlying protein interaction as a graph or network. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the quantification of the importance of each amino acid of a protein for its interactions. Furthermore, the determination of the pattern of correlations between residues yields insights into the functional architecture of an interaction. This is of special interest for intrinsically disordered proteins, since the structural (three‐dimensional) architecture of these proteins and their complexes is difficult to determine. The power of the proposed methodology is demonstrated at the example of the interaction between the intrinsically disordered protein osteopontin and its natural ligand heparin.  相似文献   

8.
Developing new drugs remains prohibitively expensive, time-consuming, and often involves safety issues. Accurate prediction of drug-target interactions (DTIs) can guide the drug discovery process and thus facilitate drug development. Non-Euclidian data such as drug-like molecule structures, key pocket residue structures, and protein interaction networks can be represented effectively using graphs. Therefore, the emerging graph neural network has been rapidly applied to predict DTIs, and proved effective in finding repositioning drugs and accelerating drug discovery. In this review, we provide a brief overview of deep neural networks used in DTI models. Then, we summarize the database required for DTI prediction, followed by a comprehensive introduction of applications of graph neural networks for DTI prediction. We also highlight current challenges and future directions to guide the further development of this field.  相似文献   

9.
Zhao  Chengshuai  Qiu  Yang  Zhou  Shuang  Liu  Shichao  Zhang  Wen  Niu  Yanqing 《BMC genomics》2020,21(13):1-12
Background

Researchers discover LncRNA–miRNA regulatory paradigms modulate gene expression patterns and drive major cellular processes. Identification of lncRNA-miRNA interactions (LMIs) is critical to reveal the mechanism of biological processes and complicated diseases. Because conventional wet experiments are time-consuming, labor-intensive and costly, a few computational methods have been proposed to expedite the identification of lncRNA-miRNA interactions. However, little attention has been paid to fully exploit the structural and topological information of the lncRNA-miRNA interaction network.

Results

In this paper, we propose novel lncRNA-miRNA prediction methods by using graph embedding and ensemble learning. First, we calculate lncRNA-lncRNA sequence similarity and miRNA-miRNA sequence similarity, and then we combine them with the known lncRNA-miRNA interactions to construct a heterogeneous network. Second, we adopt several graph embedding methods to learn embedded representations of lncRNAs and miRNAs from the heterogeneous network, and construct the ensemble models using two ensemble strategies. For the former, we consider individual graph embedding based models as base predictors and integrate their predictions, and develop a method, named GEEL-PI. For the latter, we construct a deep attention neural network (DANN) to integrate various graph embeddings, and present an ensemble method, named GEEL-FI. The experimental results demonstrate both GEEL-PI and GEEL-FI outperform other state-of-the-art methods. The effectiveness of two ensemble strategies is validated by further experiments. Moreover, the case studies show that GEEL-PI and GEEL-FI can find novel lncRNA-miRNA associations.

Conclusion

The study reveals that graph embedding and ensemble learning based method is efficient for integrating heterogeneous information derived from lncRNA-miRNA interaction network and can achieve better performance on LMI prediction task. In conclusion, GEEL-PI and GEEL-FI are promising for lncRNA-miRNA interaction prediction.

  相似文献   

10.
B-factor from X-ray crystal structure can well measure protein structural flexibility, which plays an important role in different biological processes, such as catalysis, binding and molecular recognition. Understanding the essence of flexibility can be helpful for the further study of the protein function. In this study, we attempted to correlate the flexibility of a residue to its interactions with other residues by representing the protein structure as a residue contact network. Here, several well established network topological parameters were employed to feature such interactions. A prediction model was constructed for B-factor of a residue by using support vector regression (SVR). Pearson correlation coefficient (CC) was used as the performance measure. CC values were 0.63 and 0.62 for single amino acid and for the whole sequence, respectively. Our results revealed well correlations between B-factors and network topological parameters. This suggests that the protein structural flexibility could be well characterized by the inter-amino acid interactions in a protein.  相似文献   

11.

Background

Protein-protein interactions play a critical role in protein function. Completion of many genomes is being followed rapidly by major efforts to identify interacting protein pairs experimentally in order to decipher the networks of interacting, coordinated-in-action proteins. Identification of protein-protein interaction sites and detection of specific amino acids that contribute to the specificity and the strength of protein interactions is an important problem with broad applications ranging from rational drug design to the analysis of metabolic and signal transduction networks.

Results

In order to increase the power of predictive methods for protein-protein interaction sites, we have developed a consensus methodology for combining four different methods. These approaches include: data mining using Support Vector Machines, threading through protein structures, prediction of conserved residues on the protein surface by analysis of phylogenetic trees, and the Conservatism of Conservatism method of Mirny and Shakhnovich. Results obtained on a dataset of hydrolase-inhibitor complexes demonstrate that the combination of all four methods yield improved predictions over the individual methods.

Conclusions

We developed a consensus method for predicting protein-protein interface residues by combining sequence and structure-based methods. The success of our consensus approach suggests that similar methodologies can be developed to improve prediction accuracies for other bioinformatic problems.  相似文献   

12.

Background

Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate.

Results

We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific HomPPI), which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC) of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of both the query and the target can be reliably identified. The HomPPI web server is available at http://homppi.cs.iastate.edu/.

Conclusions

Sequence homology-based methods offer a class of computationally efficient and reliable approaches for predicting the protein-protein interface residues that participate in either obligate or transient interactions. For query proteins involved in transient interactions, the reliability of interface residue prediction can be improved by exploiting knowledge of putative interaction partners.  相似文献   

13.
We present a novel partner‐specific protein–protein interaction site prediction method called PAIRpred. Unlike most existing machine learning binding site prediction methods, PAIRpred uses information from both proteins in a protein complex to predict pairs of interacting residues from the two proteins. PAIRpred captures sequence and structure information about residue pairs through pairwise kernels that are used for training a support vector machine classifier. As a result, PAIRpred presents a more detailed model of protein binding, and offers state of the art accuracy in predicting binding sites at the protein level as well as inter‐protein residue contacts at the complex level. We demonstrate PAIRpred's performance on Docking Benchmark 4.0 and recent CAPRI targets. We present a detailed performance analysis outlining the contribution of different sequence and structure features, together with a comparison to a variety of existing interface prediction techniques. We have also studied the impact of binding‐associated conformational change on prediction accuracy and found PAIRpred to be more robust to such structural changes than existing schemes. As an illustration of the potential applications of PAIRpred, we provide a case study in which PAIRpred is used to analyze the nature and specificity of the interface in the interaction of human ISG15 protein with NS1 protein from influenza A virus. Python code for PAIRpred is available at http://combi.cs.colostate.edu/supplements/pairpred/ . Proteins 2014; 82:1142–1155. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
To understand the function of protein complexes and their association with biological processes, a lot of studies have been done towards analyzing the protein-protein interaction (PPI) networks. However, the advancement in high-throughput technology has resulted in a humongous amount of data for analysis. Moreover, high level of noise, sparseness, and skewness in degree distribution of PPI networks limits the performance of many clustering algorithms and further analysis of their interactions.In addressing and solving these problems we present a novel random walk based algorithm that converts the incomplete and binary PPI network into a protein-protein topological similarity matrix (PP-TS matrix). We believe that if two proteins share some high-order topological similarities they are likely to be interacting with each other. Using the obtained PP-TS matrix, we constructed and used weighted networks to further study and analyze the interaction among proteins. Specifically, we applied a fully automated community structure finding algorithm (Auto-HQcut) on the obtained weighted network to cluster protein complexes. We then analyzed the protein complexes for significance in biological processes. To help visualize and analyze these protein complexes we also developed an interface that displays the resulting complexes as well as the characteristics associated with each complex.Applying our approach to a yeast protein-protein interaction network, we found that the predicted protein-protein interaction pairs with high topological similarities have more significant biological relevance than the original protein-protein interactions pairs. When we compared our PPI network reconstruction algorithm with other existing algorithms using gene ontology and gene co-expression, our algorithm produced the highest similarity scores. Also, our predicted protein complexes showed higher accuracy measure compared to the other protein complex predictions.  相似文献   

15.
细胞因子(cytokine)是一类由免疫细胞和某些非免疫细胞合成和分泌的信号分子,在免疫系统中通过结合相应受体调节细胞生长、分化和调控免疫应答。目前研究多侧重于通过实验方法检测细胞因子和受体的相互作用来研究细胞间的通讯网络,但存在实验周期长、设备要求高和成本高等不足。因此,有必要通过计算方法来加快对细胞-细胞因子相互作用(cell-cytokine interactions, CKI)的系统研究。本文提出一种基于变分图自编码器(variational graph auto-encoder, VGAE)预测细胞-细胞因子相互作用的深度学习模型——DeepCKI。该模型可有效融合蛋白质相互作用网络和不同类型的蛋白质特征,充分挖掘网络拓扑结构和节点属性中的有效信息,实现对细胞-细胞因子相互作用的高效预测。与变分自编码和深度神经网络方法相比,采用图结构设计的DeepCKI表现出了最优的预测性能。DeepCKI模型对4种不同类型细胞-细胞因子相互作用的ROC曲线下面积均高于0.8,模型具有一定的鲁棒性和有效性。预测打分排名前100的细胞-细胞因子相互作用中,有36对已被最新发表文献验证,表明该模...  相似文献   

16.
Protein-protein interactions, a key to almost any biological process, are mediated by molecular mechanisms that are not entirely clear. The study of these mechanisms often focuses on all residues at protein-protein interfaces. However, only a small subset of all interface residues is actually essential for recognition or binding. Commonly referred to as "hotspots," these essential residues are defined as residues that impede protein-protein interactions if mutated. While no in silico tool identifies hotspots in unbound chains, numerous prediction methods were designed to identify all the residues in a protein that are likely to be a part of protein-protein interfaces. These methods typically identify successfully only a small fraction of all interface residues. Here, we analyzed the hypothesis that the two subsets correspond (i.e., that in silico methods may predict few residues because they preferentially predict hotspots). We demonstrate that this is indeed the case and that we can therefore predict directly from the sequence of a single protein which residues are interaction hotspots (without knowledge of the interaction partner). Our results suggested that most protein complexes are stabilized by similar basic principles. The ability to accurately and efficiently identify hotspots from sequence enables the annotation and analysis of protein-protein interaction hotspots in entire organisms and thus may benefit function prediction and drug development. The server for prediction is available at http://www.rostlab.org/services/isis.  相似文献   

17.
This paper proposes a novel method using protein residue conservation and evolution information, i.e., spatial sequence profile, sequence information entropy and evolution rate, to infer protein binding sites. Some predictors based on support vector machines (SVMs) algorithm are constructed to predict the role of surface residues in protein-protein interface. By combining protein residue characters, the prediction performance can be improved obviously. We then made use of the predicted labels of neighbor residues to improve the performance of the predictors. The efficiency and the effectiveness of our proposed approach are verified by its better prediction performance based on a non-redundant data set of heterodimers.  相似文献   

18.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

19.
Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data.  相似文献   

20.
pi-pi, Cation-pi, and hydrophobic packing interactions contribute specificity to protein folding and stability to the native state. As a step towards developing improved models of these interactions in proteins, we compare the side-chain packing arrangements in native proteins to those found in compact decoys produced by the Rosetta de novo structure prediction method. We find enrichments in the native distributions for T-shaped and parallel offset arrangements of aromatic residue pairs, in parallel stacked arrangements of cation-aromatic pairs, in parallel stacked pairs involving proline residues, and in parallel offset arrangements for aliphatic residue pairs. We then investigate the extent to which the distinctive features of native packing can be explained using Lennard-Jones and electrostatics models. Finally, we derive orientation-dependent pi-pi, cation-pi and hydrophobic interaction potentials based on the differences between the native and compact decoy distributions and investigate their efficacy for high-resolution protein structure prediction. Surprisingly, the orientation-dependent potential derived from the packing arrangements of aliphatic side-chain pairs distinguishes the native structure from compact decoys better than the orientation-dependent potentials describing pi-pi and cation-pi interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号