首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Several unique Sus-like polysaccharide utilization loci (PULs) were identified from bacteria resident in bovine rumen microbiomes through functional screening of a fosmid library. The loci were phylogenetically assigned to the genus Prevotella within the phylum Bacteroidetes. These findings were augmented by a bioinformatic re-evaluation of ruminal Prevotella genomes, revealing additional loci not previously reported in the literature. Analysis of Bacteroidales-affiliated genomes reconstructed from a bovine rumen metagenome in a previous study further expanded the diversity of Sus-like PULs resident in this microbiome. Our findings suggest that Sus-like systems represent an important mechanism for degradation of a range of plant-derived glycans in ruminants.  相似文献   

3.
Metagenomic insights into the fibrolytic microbiome in yak rumen   总被引:1,自引:0,他引:1  
X Dai  Y Zhu  Y Luo  L Song  D Liu  L Liu  F Chen  M Wang  J Li  X Zeng  Z Dong  S Hu  L Li  J Xu  L Huang  X Dong 《PloS one》2012,7(7):e40430
The rumen hosts one of the most efficient microbial systems for degrading plant cell walls, yet the predominant cellulolytic proteins and fibrolytic mechanism(s) remain elusive. Here we investigated the cellulolytic microbiome of the yak rumen by using a combination of metagenome-based and bacterial artificial chromosome (BAC)-based functional screening approaches. Totally 223 fibrolytic BAC clones were pyrosequenced and 10,070 ORFs were identified. Among them 150 were annotated as the glycoside hydrolase (GH) genes for fibrolytic proteins, and the majority (69%) of them were clustered or linked with genes encoding related functions. Among the 35 fibrolytic contigs of >10 Kb in length, 25 were derived from Bacteroidetes and four from Firmicutes. Coverage analysis indicated that the fibrolytic genes on most Bacteroidetes-contigs were abundantly represented in the metagenomic sequences, and they were frequently linked with genes encoding SusC/SusD-type outer-membrane proteins. GH5, GH9, and GH10 cellulase/hemicellulase genes were predominant, but no GH48 exocellulase gene was found. Most (85%) of the cellulase and hemicellulase proteins possessed a signal peptide; only a few carried carbohydrate-binding modules, and no cellulosomal domains were detected. These findings suggest that the SucC/SucD-involving mechanism, instead of one based on cellulosomes or the free-enzyme system, serves a major role in lignocellulose degradation in yak rumen. Genes encoding an endoglucanase of a novel GH5 subfamily occurred frequently in the metagenome, and the recombinant proteins encoded by the genes displayed moderate Avicelase in addition to endoglucanase activities, suggesting their important contribution to lignocellulose degradation in the exocellulase-scarce rumen.  相似文献   

4.
The human gut harbors thousands of bacterial taxa. A profusion of metagenomic sequence data has been generated from human stool samples in the last few years, raising the question of whether more taxa remain to be identified. We assessed metagenomic data generated by the Human Microbiome Project Consortium to determine if novel taxa remain to be discovered in stool samples from healthy individuals. To do this, we established a rigorous bioinformatics pipeline that uses sequence data from multiple platforms (Illumina GAIIX and Roche 454 FLX Titanium) and approaches (whole-genome shotgun and 16S rDNA amplicons) to validate novel taxa. We applied this approach to stool samples from 11 healthy subjects collected as part of the Human Microbiome Project. We discovered several low-abundance, novel bacterial taxa, which span three major phyla in the bacterial tree of life. We determined that these taxa are present in a larger set of Human Microbiome Project subjects and are found in two sampling sites (Houston and St. Louis). We show that the number of false-positive novel sequences (primarily chimeric sequences) would have been two orders of magnitude higher than the true number of novel taxa without validation using multiple datasets, highlighting the importance of establishing rigorous standards for the identification of novel taxa in metagenomic data. The majority of novel sequences are related to the recently discovered genus Barnesiella, further encouraging efforts to characterize the members of this genus and to study their roles in the microbial communities of the gut. A better understanding of the effects of less-abundant bacteria is important as we seek to understand the complex gut microbiome in healthy individuals and link changes in the microbiome to disease.  相似文献   

5.
The cellulosome is an extracellular multi‐enzyme complex that is considered one of the most efficient plant cell wall‐degrading strategies devised by nature. Its unique modular architecture, achieved by high affinity and specific interaction between protein modules (cohesins and dockerins) enables formation of various enzyme combinations. Extensive research has been dedicated to the mechanistic nature of the cellulosome complex. Nevertheless, little is known regarding its distribution and abundance among microbes in natural plant fibre‐rich environments. Here, we explored these questions in bovine rumen microbial communities, specialized in efficient degradation of lignocellulosic plant material. We bioinformatically screened for cellulosomal modules in this complex environment using a previously published ultra‐deep fibre‐adherent rumen metagenome. Intriguingly, a large portion of the functions of the dockerin‐containing proteins were related to alternative biological processes, and not necessarily to the classic fibre degradation function. Our analysis was experimentally validated by characterizing specific interactions between selected cohesins and dockerins and revealed that cellulosome is a more generalized strategy used by diverse bacteria, some of which were not previously associated with cellulosome production. Remarkably, our results provide additional proof of similarity among rumen microbial communities worldwide. This study suggests a broader and widespread role for the cellulosomal machinery in nature.  相似文献   

6.
Lignocellulosic biomass remains a largely untapped source of renewable energy predominantly due to its recalcitrance and an incomplete understanding of how this is overcome in nature. We present here a compositional and comparative analysis of metagenomic data pertaining to a natural biomass-converting ecosystem adapted to austere arctic nutritional conditions, namely the rumen microbiome of Svalbard reindeer (Rangifer tarandus platyrhynchus). Community analysis showed that deeply-branched cellulolytic lineages affiliated to the Bacteroidetes and Firmicutes are dominant, whilst sequence binning methods facilitated the assemblage of metagenomic sequence for a dominant and novel Bacteroidales clade (SRM-1). Analysis of unassembled metagenomic sequence as well as metabolic reconstruction of SRM-1 revealed the presence of multiple polysaccharide utilization loci-like systems (PULs) as well as members of more than 20 glycoside hydrolase and other carbohydrate-active enzyme families targeting various polysaccharides including cellulose, xylan and pectin. Functional screening of cloned metagenome fragments revealed high cellulolytic activity and an abundance of PULs that are rich in endoglucanases (GH5) but devoid of other common enzymes thought to be involved in cellulose degradation. Combining these results with known and partly re-evaluated metagenomic data strongly indicates that much like the human distal gut, the digestive system of herbivores harbours high numbers of deeply branched and as-yet uncultured members of the Bacteroidetes that depend on PUL-like systems for plant biomass degradation.  相似文献   

7.
Garlic (Allium sativum L.) and its constituents have been shown to modify rumen fermentation and improve growth performance. Garlic skin, a by-product of garlic processing, contains similar bioactive components as garlic bulb. This study aimed to investigate the effects of garlic skin supplementation on growth performance, ruminal microbes, and metabolites in ruminants. Twelve Hu lambs were randomly assigned to receive a basal diet (CON) or a basal diet supplemented with 80 g/kg DM of garlic skin (GAS). The experiment lasted for 10 weeks, with the first 2 weeks serving as the adaptation period. The results revealed that the average daily gain and volatile fatty acid concentration were higher (P < 0.05) in lambs fed GAS than those in the CON group. Garlic skin supplementation did not significantly (P > 0.10) affect the α-diversity indices, including the Chao1 index, the abundance-based coverage estimator value, and the Shannon and Simpson indices. At the genus level, garlic skin supplementation altered the ruminal bacterial composition by increasing (P < 0.05) the relative abundances of Prevotella, Bulleidia, Howardella, and Methanosphaera and decreasing (P < 0.05) the abundance of Fretibacterium. Concentrations of 139 metabolites significantly differed (P < 0.05) between the GAS and the CON groups. Among them, substrates for rumen microbial protein synthesis were enriched in the GAS group. The pathways of pyrimidine metabolism, purine metabolism, and vitamin B6 metabolism were influenced (P < 0.05) by garlic skin supplementation. Integrated correlation analysis also provided a link between the significantly altered rumen microbiota and metabolites. Thus, supplementation of garlic skin improved the growth performance of lambs by modifying rumen fermentation through shifts in the rumen microbiome and metabolome.  相似文献   

8.
Increasing productivity is a key target in ruminant science which requires better understanding of the rumen microbiota. This study investigated how maternal versus artificial rearing shapes the rumen microbiota using 24 sets of triplet lambs. Lambs within each sibling set were randomly assigned to natural rearing on the ewe (NN); ewe colostrum for 24 h followed by artificial milk feeding (NA); and colostrum alternative and artificial milk feeding (AA). Maternal colostrum feeding enhanced VFA production at weaning but not thereafter. At weaning, lambs reared on milk replacer had no rumen protozoa and lower microbial diversity, whereas natural rearing accelerated the rumen microbial development and facilitated the transition to solid diet. Differences in the rumen prokaryotic communities disappear later in life when all lambs were grouped on the same pasture up to 23 weeks of age. However, NN animals retained higher fungal diversity and abundances of Piromyces, Feramyces and Diplodiniinae protozoa as well as higher feed digestibility (+4%) and animal growth (+6.5%) during the grazing period. Nevertheless, no correlations were found between rumen microbiota and productive outcomes. These findings suggest that the early life nutritional intervention determine the initial rumen microbial community, but the persistence of these effects later in life is weak.  相似文献   

9.
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

10.
Viruses are the most abundant biological entities on the planet and play an important role in balancing microbes within an ecosystem and facilitating horizontal gene transfer. Although bacteriophages are abundant in rumen environments, little is known about the types of viruses present or their interaction with the rumen microbiome. We undertook random pyrosequencing of virus-enriched metagenomes (viromes) isolated from bovine rumen fluid and analysed the resulting data using comparative metagenomics. A high level of diversity was observed with up to 28,000 different viral genotypes obtained from each environment. The majority (~78%) of sequences did not match any previously described virus. Prophages outnumbered lytic phages approximately 2:1 with the most abundant bacteriophage and prophage types being associated with members of the dominant rumen phyla (Firmicutes and Proteobacteria). Metabolic profiling based on SEED subsystems revealed an enrichment of sequences with putative functional roles in DNA and protein metabolism, but a surprisingly low proportion of sequences assigned to carbohydrate and amino acid metabolism. We expanded our analysis to include previously described metagenomic data and 14 reference genomes. Clustered regularly interspaced short palindromic repeats (CRISPR) were detected in most of the microbial genomes, suggesting previous interactions between viral and microbial communities.  相似文献   

11.
孙雨  常晶晶  田春杰 《生态学报》2021,41(24):9963-9969
在根际微环境中,特定的土壤微生物能够利用自身独特的趋化系统感应根系分泌物,响应植物的选择性招募。细菌的趋化系统介导了植物-微生物以及微生物间相互作用,在植物对根际微生物组的选择中发挥着关键的生态学功能。综述了根际微生物组中细菌趋化系统的研究进展,从生态学的角度提出了未来针对根际细菌趋化系统的研究方向,旨在阐明根际细菌趋化系统的生态学功能,为增进理解作物根际微生物组的募集过程,以及未来农业中根际微生物组的重组构建奠定理论基础。  相似文献   

12.
Archives of Microbiology - Cellulose is the most abundant natural polymer present on Earth in the form of agriculture waste. Hydrolysis of agriculture waste for simple fermentable reducing sugars...  相似文献   

13.
Ecological restoration is a globally important and well‐financed management intervention used to combat biodiversity declines and land degradation. Most restoration aims to increase biodiversity towards a reference state, but there are concerns that intended outcomes are not reached due to unsuccessful interventions and land‐use legacy issues. Monitoring biodiversity recovery is essential to measure success; however, most projects remain insufficiently monitored. Current field‐based methods are hard to standardize and are limited in their ability to assess important components of ecosystems, such as bacteria. High‐throughput amplicon sequencing of environmental DNA (metabarcoding of eDNA) has been proposed as a cost‐effective, scalable and uniform ecological monitoring solution, but its application in restoration remains largely untested. Here we show that metabarcoding of soil eDNA is effective at demonstrating the return of the native bacterial community in an old field following native plant revegetation. Bacterial composition shifted significantly after 8 years of revegetation, where younger sites were more similar to cleared sites and older sites were more similar to remnant stands. Revegetation of the native plant community strongly impacted on the belowground bacterial community, despite the revegetated sites having a long and dramatically altered land‐use history (i.e. >100 years grazing). We demonstrate that metabarcoding of eDNA provides an effective way of monitoring changes in bacterial communities that would otherwise go unchecked with conventional monitoring of restoration projects. With further development, awareness of microbial diversity in restoration has significant scope for improving the efficacy of restoration interventions more broadly.  相似文献   

14.
Traditional methods for bacterial cultivation recover only a small fraction of bacteria from all sorts of natural environments, and attempts have been made to improve the bacterial culturability. Here we describe the development of a cultivation method, based on the embedment of pure bacterial cultures in between two layers of agar. Plates containing either embedded Pseudomonas putida or Arthrobacter globiformis resulted in higher numbers of CFUs of soil bacteria (21% and 38%, respectively) after 833 h of incubation, compared to plates with no embedded strain. This indicates a stimulatory effect of the bacterial pure cultures on the cultivation of soil bacteria. Analysis of partial 16S rRNA gene sequences revealed a phylogenetical distribution of the soil isolates into 7 classes in 4 phyla. No difference was observed at the phylum or class level when comparing isolates grouped according to embedded strain. The number of isolates belonging to the same class as the embedded strain was reduced in comparison to that of plates with no embedded strain, indicating that intercellular signalling was unlikely to cause the observed stimulatory effect. Significantly higher fractions of isolates with less than 97% sequence homology to known sequenced isolates in GenBank were recovered from plates with embedded strains than from those without, which indicate a higher number of potential novel soil isolates. This approach for cultivation is therefore a feasible alternative or supplement to traditional cultivation on agar plates in order to enhance bacterial culturability.  相似文献   

15.
Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml?1. C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.  相似文献   

16.
The rumen microbiome ‐ a remarkable example of obligatory symbiosis with high ecological and social relevance Subject Categories: Digestive System, Ecology, Microbiology, Virology & Host Pathogen Interaction

Ruminants are intimately linked to mankind since their domestication some 8,000 years ago, and their close relationship may have well been one of the main drivers of human civilization (Diamond, 1997). Ruminants—cattle, sheep, goats, deer, gazelles, and so on—also embody the close link between solar energy transformed via photosynthesis and digestion into consumable products, such as meat, milk, leather, or wool, that have sustained humanity for millennia. Throughout this shared history, constant improvements through breeding, husbandry, and industrial livestock farming have greatly increased the production of milk, meat, and other animal‐based products.Ruminants, more so than any other mammalian group also represent the epitome of mammalian‐microbe symbiosis, as they rely completely on microbial fermentation to sustain their lives. In the rumen, the fermentative organ situated in the upper gastrointestinal tract resides a vast microbial community from all domains of life—bacteria, archaea, and eukarya—that turn indigestible plant feed into food for the animal. The rumen microbiome produces up to 70% of the energy the animal needs for growth and maintenance, and, from mankind''s perspective, for the production of food and other consumables.
Ruminants, more so than any other mammalian group, also represent the epitome of mammalian‐microbe symbiosis, as they rely completely on microbial fermentation to sustain their lives.
With growing understanding that these microorganisms are responsible for degrading plant material and supplying nutrients for the animals, a new research discipline emerged along with aspirations to improve the yield of livestock farming. While most research had understandably focused on production efficiency, it also showed that the rumen microbiome is intricately linked to many other phenotypes of the animal. This understanding comes at a time when we increasingly realize that mankind''s actions have a detrimental effect on the environment. The microbial fermentation in the rumen produces large amounts of methane, a potent greenhouse gas that has been demonstrated to contribute to global climate change. We therefore need to consider both our increased demand for meat and milk products and aim to mitigate the negative environmental impact of intensive livestock farming. Modulating the microbial community to sustain or further increase productivity while decreasing methane emissions has indeed become a major goal for microbial ecologists studying the rumen microbiome and its interactions with the host animal. In this article, we discuss the driving forces that affect the establishment and composition of the rumen microbiome and its plasticity, and potential avenues for harnessing these forces for a more sustainable production of animal products.  相似文献   

17.
18.
19.
Nuclease activities of the predominantly bacterial population obtained from buffalo rumen were investigated. Optimum temperature for hydrolysis of both DNA and RNA was 50°C whereas DNAase activity was observed to be stable up to 50°C, a decrease in RNAase activity was observed even after 40°C. Two pH optima, one at 5.5 and the other at 7.5, were recorded for hydrolysis of DNA. RNAase activity was maximum between pH 6.0 to 7.0. Whereas DNAase activity was stable near its optimum pH, RNAase activity was stable between pH 7.0 to 8.5. Mn2+ ions stimulated DNAase activity. It was strongly inhibited by Hg2+, Zn2+, Pb2+ and Ag+. RNAase activity was stimulated by Mg2+ ions and was strongly inhibited by Hg2+, Cu2+, Zn2+ and Ag+. Cysteine hydrochloride and 2-mercaptoethanol stimulated DNAase activity. The activity was strongly inhibited by N-ethylmaleimide, 4-chloromercuribenzoate, 8-quinolinol, iodoacetic acid and 1,10-phenanthroline. RNAase activity was stimulated by cysteine hydrochloride, reduced glutathione and 2-mercaptoethanol and was strongly inhibited by 4-chloromercuribenzoate, 8-quinolinol and 2,2′-bipyridyl. Part of PhD Thesis submitted by the first author to Kurukshetra University.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号