首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotide-based therapies have considerable potential in cancer, viral, and cardiovascular disease therapies. However, it is becoming clear that the biological effects of oligonucleotides are not solely due to the intended sequence-specific interactions with nucleic acids. Oligonucleotides are also capable of interacting with numerous cellular proteins owing to their polyanionic character or specific secondary structure. We have examined the antiproliferative activity, protein binding, and G-quartet formation of a series of guanosine-rich oligonucleotides, which are analogues of GRO29A, a G-quartet forming, growth-inhibitory oligonucleotide, whose effects we have previously described [Bates P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O., and Miller, D. M. (1999) J. Biol. Chem. 274, 26369-26377]. The GRO29A analogues include phosphorothioate (PS29A), 2'-O-methyl RNA (MR29A), and mixed DNA/2'-O-methyl RNA (MRdG29A) oligonucleotides. We demonstrate by UV spectroscopy that all of the modified analogues form stable structures, which are consistent with G-quartet formation. We find that the phosphorothioate and mixed DNA/2'-O-methyl analogues are able to significantly inhibit proliferation in a number of tumor cell lines, while the 2'-O-methyl RNA has no significant effects. Similar to the original oligonucleotide, GRO29A, the growth inhibitory oligonucleotides were able to compete with the human telomere sequence oligonucleotide for binding to a specific cellular protein. The less active MR29A does not compete significantly for this protein. On the basis of molecular modeling of the oligonucleotide structures, it is likely that the inactivity of MR29A is due to the differences in the groove structure of the quadruplex formed by this oligonucleotide. Interestingly, all GRO29A analogues, including an unmodified DNA phosphodiester oligonucleotide, are remarkably resistant to nuclease degradation in the presence of serum-containing medium, indicating that secondary structure plays an important role in biological stability. The remarkable stability and strong antiproliferative activity of these oligonucleotides confirm their potential as therapeutic agents.  相似文献   

2.
Computational tools for prediction of the secondary structure of two or more interacting nucleic acid molecules are useful for understanding mechanisms for ribozyme function, determining the affinity of an oligonucleotide primer to its target, and designing good antisense oligonucleotides, novel ribozymes, DNA code words, or nanostructures. Here, we introduce new algorithms for prediction of the minimum free energy pseudoknot-free secondary structure of two or more nucleic acid molecules, and for prediction of alternative low-energy (sub-optimal) secondary structures for two nucleic acid molecules. We provide a comprehensive analysis of our predictions against secondary structures of interacting RNA molecules drawn from the literature. Analysis of our tools on 17 sequences of up to 200 nucleotides that do not form pseudoknots shows that they have 79% accuracy, on average, for the minimum free energy predictions. When the best of 100 sub-optimal foldings is taken, the average accuracy increases to 91%. The accuracy decreases as the sequences increase in length and as the number of pseudoknots and tertiary interactions increases. Our algorithms extend the free energy minimization algorithm of Zuker and Stiegler for secondary structure prediction, and the sub-optimal folding algorithm by Wuchty et al. Implementations of our algorithms are freely available in the package MultiRNAFold.  相似文献   

3.
During the past decade, synthetic nucleobase oligomers have found wide use in biochemical sciences, biotechnology and molecular medicine, both as research and/or diagnostic tools and as therapeutics. Numerous applications of common and modified oligonucleotides and oligonucleotide mimics rely on their ability to sequence-specifically recognize nucleic acid targets (DNA or RNA) by forming duplexes or triplexes. In general, these applications would benefit significantly from enhanced binding affinities of nucleobase oligomers in the formation of various secondary structures. However, for high-affinity probes, the selectivity of sequence recognition must also be improved to avoid undesirable associations with mismatched DNA and RNA sites. Here, we review recent progress in understanding the molecular mechanisms of nucleic acid interactions and the development of new high-affinity plus high-specificity oligonucleotides and their mimics, with particular emphasis on peptide nucleic acids.  相似文献   

4.
A simple method for the detection of sequence- and structural-selective ligand binding to nucleic acids is described. The method is based on the commonly used thermal denaturation method in which ligand binding is registered as an elevation in the nucleic acid melting temperature (Tm). The method can be extended to yield a new, higher -throughput, assay by the simple expediency of melting designed mixtures of polynucleotides (or oligonucleotides) with different sequences or structures of interest. Upon addition of ligand to such mixtures at low molar ratios, the Tm is shifted only for the nucleic acid containing the preferred sequence or structure. Proof of principle of the assay is provided using first a mixture of polynucleotides with different sequences and, second, with a mixture containing DNA, RNA and two types of DNA:RNA hybrid structures. Netropsin, ethidium, daunorubicin and actinomycin, ligands with known sequence preferences, were used to illustrate the method. The applicability of the approach to oligonucleotide systems is illustrated by the use of simple ternary and binary mixtures of defined sequence deoxyoligonucleotides challenged by the bisanthracycline WP631. The simple mixtures described here provide proof of principle of the assay and pave the way for the development of more sophisticated mixtures for rapidly screening the selectivity of new nucleic acid binding compounds.  相似文献   

5.
Oligodeoxynucleotides with an internal intercalating agent have been targeted to single-stranded sequences containing hairpin structures. The oligonucleotide binds to nonadjacent single-stranded sequences on both sides of the hairpin structure in such a way as to form a three-way junction. The acridine derivative is inserted at a position that allows it to interact with the three-way junction. The melting temperature (Tm) of complexes formed between the hairpin-containing target and oligonucleotides containing one internal acridine derivative was higher than that obtained with the same target and an unmodified oligonucleotide (DeltaTm = +13 degrees C). The internal acridine provided the oligonucleotide with a higher affinity than covalent attachment to the 5' end. Oligonucleotides could also be designed to recognize a hairpin-containing single-stranded nucleic acid by formation of Watson-Crick hydrogen bonds with a single-stranded part and Hoogsteen hydrogen bonds with the stem of the hairpin. An internal acridine derivative was introduced at the junction between the two domains, the double helix domain with Watson-Crick base pairs and the triple helix domain involving Hoogsteen base triplets in the major groove of the hairpin stem. Oligonucleotides with an internal acridine or an acridine at their 5' end have similar binding affinities for the stem-loop-containing target. The bis-modified oligonucleotide containing two acridines, one at the 5' end and one at an internal site, did not exhibit a higher affinity than the oligonucleotides with only one intercalating agent. The design of oligonucleotides with an internal intercalating agent might be of interest to control gene expression through recognition of secondary structures in single-stranded targets.  相似文献   

6.
Cyclohexene nucleic acids (CeNA), which are characterized by the presence of a cyclohexene moiety instead of a natural (deoxy)ribose sugar, are known to increase the thermal and enzymatic stability when incorporated in RNA oligonucleotides. As it has been demonstrated that even a single cyclohexenyl nucleoside, when incorporated in an oligonucleotide, can have a profound effect on the biological activity of the oligonucleotide, further research is warranted to study the complex of such oligonucleotides with target proteins. In order to analyse the influence of CeNA residues onto the helix conformation and hydration of natural nucleic acid structures, a cyclohexenyl-adenine building block (xAr) was incorporated into the Dickerson sequence CGCGA(xAr)TTCGCG. The crystal structure of this sequence determined to a resolution of 1.90 Å. The global helix belongs to the B-type family and shows a water spine, which is partially broken up by the apolar cyclohexene residue. The cyclohexene ring adopts the 2E-conformation allowing a better incorporation of the residue in the dodecamer sequence. The crystal packing is stabilized by cobalt hexamine residues and belongs to space group P2221, never before reported for nucleic acids.  相似文献   

7.
The possibility of designing antisense oligodeoxynucleotides complementary to non-adjacent single-stranded sequences containing hairpin structures was studied using a DNA model system. The structure and stability of complexes formed by a 17mer oligonucleotide with DNA fragments containing hairpin structures was investigated by spectroscopic measurements (melting curves) and chemical reactions (osmium tetroxide reaction, copper-phenanthroline cleavage). A three-way junction was formed when the oligonucleotide was bound to both sides of the hairpin structure. When the complementary sequences of the two parts of the oligonucleotide were separated by a sequence which could not form a hairpin, the oligonucleotide exhibited a slightly weaker binding than to the hairpin-containing target. An oligodeoxynucleotide-phenanthroline conjugate was designed to form Watson-Crick base pairs with two single-stranded regions flanking a hairpin structure in a DNA fragment. In the presence of Cu2+ ions and a reducing agent, two main cleavage sites were observed at the end of the duplex structure formed by the oligonucleotide-phenanthroline conjugate with its target sequence. Competition experiments showed that both parts of the oligonucleotide must be bound in order to observe sequence-specific cleavage. Cleavage was still observed with target sequences which could not form a hairpin, provided the reaction was carried out at lower temperatures. These results show that sequence-specific recognition and modification (cleavage) can be achieved with antisense oligonucleotides which bind to non-adjacent sequences in a single-stranded nucleic acid.  相似文献   

8.
Sequence-specific hybridization of antisense and antigene agent to the target nucleic acid is an important therapeutic strategy to modulate gene expression. However, efficiency of such agents falls due to inherent intramolecular-secondary-structures present in the target that pose competition to intermolecular hybridization by complementary antisense/antigene agent. Performance of these agents can be improved by employing structurally modified complementary oligonucleotides that efficiently hybridize to the target and force it to transit from an intramolecular-structured-state to an intermolecular-duplex state. In this study, the potential of variably substituted locked nucleic acid-modified oligonucleotides (8mer) to hybridize and disrupt highly stable, secondary structure of nucleic acid has been biophysically characterized and compared with the conventionally used unmodified DNA oligonucleotides. The target here is a stem-loop hairpin oligonucleotide-a structure commonly present in most structured-nucleic acids and known to exhibit an array of biological functions. Using fluorescence-based studies and EMSA we prove that LNA-modified oligonucleotides hybridize to the target hairpin with higher binding affinity even at lower concentration and subsequently, force it to assume a duplex conformation. LNA-modified oligonucleotides may thus, prove as potential therapeutic candidates to manipulate gene expression by disruption of biologically relevant nucleic acid secondary structure.  相似文献   

9.
We report the development of new software, OligoDesign, which provides optimal design of LNA (locked nucleic acid) substituted oligonucleotides for functional genomics applications. LNAs constitute a novel class of bicyclic RNA analogs having an exceptionally high affinity and specificity toward their complementary DNA and RNA target molecules. The OligoDesign software features recognition and filtering of the target sequence by genome-wide BLAST analysis in order to minimize cross-hybridization with non-target sequences. Furthermore it includes routines for prediction of melting temperature, self-annealing and secondary structure for LNA substituted oligonucleotides, as well as secondary structure prediction of the target nucleotide sequence. Individual scores for all these properties are calculated for each possible LNA oligonucleotide in the query gene and the OligoDesign program ranks the LNA capture probes according to a combined fuzzy logic score and finally returns the top scoring probes to the user in the output. We have successfully used the OligoDesign tool to design a Caenorhabditis elegans LNA oligonucleotide microarray, which allows monitoring of the expression of a set of 120 potential marker genes for a variety of stress and toxicological processes and toxicologically relevant pathways. The OligoDesign program is freely accessible at http://lnatools.com/.  相似文献   

10.
Current developments in nanosciences indicate that the self-assembly of macromolecules, such as proteins or metallic nanoclusters, can be conveniently achieved by means of nucleic acid hybridization. Within this context, we here report on the evaluation of single-stranded nucleic acids to be utilized as carrier backbones in DNA-directed self-assembly. A microplate solid-phase hybridization assay is described which allows rapid experimental determination of the hybridization efficiencies of various sequence stretches within a given nucleic acid carrier strand. As demonstrated for two DNA fragments of different sequence, the binding efficiencies of several oligonucleotides depend on the formation of specific secondary structure elements within the carrier molecule. A correlation of sequence-specific hybridization capability with modeled secondary structure is also obvious from experiments using the fluorescence gel-shift analysis. Electrophoretic studies on the employment of helper oligonucleotides in the formation of supramolecular conjugates of several oligonucleotide-tagged proteins indicate, that structural constraints can be minimized by disruption of intramolecular secondary structures of the carrier molecule. To estimate the influences of the chemical nature of the carrier, gel-shift experiments are carried out to compare a 170mer RNA molecule with its DNA analogue. Ternary aggregates, containing two protein components bound to the carrier, are formed with a greater efficiency on the DNA instead of the RNA carrier backbone.  相似文献   

11.
Nucleoside phosphoramidite derivatives containing two protected primary hydroxyl functions have been incorporated into synthetic oligonucleotides as 'branching monomers'. With selective deprotection, multiple identical copies of an additional oligonucleotide can be incorporated to form fork- or comb-like structures for use as signal amplification materials in nucleic acid hybridization assays.  相似文献   

12.
Although quadruplex nucleic acids are thought to be involved in many biological processes, they are massively overwhelmed by duplex DNA in the cell. Small molecules, able to probe quadruplex nucleic acids with high optical selectivity, could possibly achieve the visualization of these processes. The aim of the method described herein is to evaluate quickly the optical selectivity of quadruplex nucleic acid probes, in isothermal conditions, using widely available materials, small quantities of oligonucleotides and virtually any kind and quantity of biological competitor. The assay relies on the use of streptavidin-coated paramagnetic particles and biotinylated quadruplex forming oligonucleotides, allowing a quick and easy separation of the quadruplex target from the competitor. In the present study, two quadruplex nucleic acids (the DNA and RNA human telomeric repeats) have been used as targets while a duplex DNA oligonucleotide, total DNA, total RNA, another quadruplex nucleic acid and a protein have been used as competitors. The optical selectivity of various probes, displaying different photophysical properties and binding selectivities, has been successfully examined, allowing the identification of a best candidate for further cell microscopy experiments. This assay allows a quick and reliable assessment of the labeling properties of a quadruplex binder in cellular environment conditions. It is an interesting alternative to gel electrophoresis experiments since it is performed in solution, has a well-resolved separation system and allows easy quantifications.  相似文献   

13.

Negatively charged DNA mimics containing phosphonate analogues of peptide nucleic acids were designed, and their physicochemical and biological properties were evaluated in the comparison with natural oligonucleotides, classical peptide nucleic acids, and morpholino phosphorodiamidate oligonucleotide analogues. The results obtained revealed a high potential of phosphonate-containing PNA derivatives for a number of biological applications, such as diagnostic, nucleic acids analysis, and inhibition of gene expression.  相似文献   

14.
The interaction of the HIV Gag polyprotein with nucleic acid is a critical step in the assembly of viral particles. The Gag polyprotein is composed of the matrix (MA), capsid (CA), and nucleocapsid (NC) domains. The NC domain is required for nucleic acid interactions, and the CA domain is required for Gag-Gag interactions. Previously, we have investigated the binding of the NC protein to d(TG)(n) oligonucleotides using surface plasmon resonance (SPR) spectroscopy. We found a single NC protein is able to bind to more than one immobilized oligonucleotide, provided that the oligonucleotides are close enough together. As NC is believed to be the nucleic acid binding domain of Gag, we might expect Gag to show the same complex behavior. We wished to analyze the stoichiometry of Gag binding to oligonucleotides without this complication due to tertiary complex formation. We have therefore analyzed Gag binding to extremely low oligonucleotide density on SPR chips. Such low densities of oligonucleotides are difficult to accurately quantitate. We have determined by Fourier transform ion cyclotron (FTICR) mass spectrometry that four molecules of NC bind to d(TG)(10) (a 20-base oligonucleotide). We developed a method of calibrating low-density surfaces using NC calibration injections. Knowing the maximal response and the stoichiometry of binding, we can precisely determine the amount of oligonucleotide immobilized at these very-low-density surfaces (<1 Response Unit). Using this approach, we have measured the binding of Gag to d(TG)(10). Gag binds to a 20-mer with a stoichiometry of greater than 4. This suggests that once Gag is bound to the immobilized oligonucleotide, additional Gag molecules can bind to this complex.  相似文献   

15.
The primary or secondary structure of single-stranded nucleic acids has been investigated with fluorescent oligonucleotides, i.e., oligonucleotides covalently linked to a fluorescent dye. Five different chromophores were used: 2-methoxy-6-chloro-9-amino-acridine, coumarin 500, fluorescein, rhodamine and ethidium. The chemical synthesis of derivatized oligonucleotides is described. Hybridization of two fluorescent oligonucleotides to adjacent nucleic acid sequences led to fluorescence excitation energy transfer between the donor and the acceptor dyes. This phenomenon was used to probe primary and secondary structures of DNA fragments and the orientation of oligodeoxynucleotides synthesized with the alpha-anomers of nucleoside units. Fluorescence energy transfer can be used to reveal the formation of hairpin structures and the translocation of genes between two chromosomes.  相似文献   

16.
Negatively charged DNA mimics containing phosphonate analogoues of peptide nucleic acids were designed, and their physicochemical and biological properties were evaluated in the comparison with natural oligonucleotides, classical peptide nucleic acids, and morpholino phosphorodiamidate oligonucleotide analogues. The results obtained revealed a high potential of phosphonate-containing PNA derivatives for a number of biological applications, such as diagnostic, nucleic acids analysis, and inhibition of gene expression.  相似文献   

17.
Effects of RNA secondary structure on cellular antisense activity   总被引:15,自引:10,他引:5       下载免费PDF全文
The secondary and tertiary structures of a mRNA are known to effect hybridization efficiency and potency of antisense oligonucleotides in vitro. Additional factors including oligonucleotide stability and cellular uptake are also thought to contribute to antisense potency in vivo. Each of these factors can be affected by the sequence of the oligonucleotide. Although mRNA structure is presumed to be a critical determinant of antisense activity in cells, to date little direct experimental evidence has addressed the significance of structure. In order to determine the importance of mRNA structure on antisense activity, oligonucleotide target sites were cloned into a luciferase reporter gene along with adjoining sequence to form known structures. This allowed us to study the effect of target secondary structure on oligonucleotide binding in the cellular environment without changing the sequence of the oligonucleotide. Our results show that structure does play a significant role in determining oligonucleotide efficacy in vivo. We also show that potency of oligonucleotides can be improved by altering chemistry to increase affinity for the mRNA target even in a region that is highly structured.  相似文献   

18.
Brukner I  Tremblay GA  Paquin B 《BioTechniques》2002,33(4):874-6, 878, 880 passim
Here we describe a process for the generation of oligonucleotide libraries representative of a given nucleic acid. Starting from at random pool of DNA oligonucleotides, the technique selects only those that hybridize to the nucleic acid template. This selection yields a highly specific library that represents an oligonucleotide image of the chosen template. The novel quality of this approach is the generation of amplifiable oligonucleotide probes that are of unique length and are easily subjected to differential selection. Here we apply this technique to produce different genomic oligonucleotide libraries and show that these genomic oligonucleotide libraries do not cross-hybridize. Differential selection of these genomic oligonucleotide libraries produces oligonucleotides that can be used in the identification, characterzation, and isolation of nucleic acids.  相似文献   

19.
The condensation of nucleic acids into well-defined particles is an integral part of several approaches to artificial cellular delivery. Improvements in the efficiency of nucleic acid delivery in vivo are important for the development of DNA- and RNA-based therapeutics. Presently, most efforts to improve the condensation and delivery of nucleic acids have focused on the synthesis of novel condensing agents. However, short oligonucleotides are not as easy to condense into well-defined particles as gene-length DNA polymers and present particular challenges for discrete particle formation. We describe a novel strategy for improving the condensation and packaging of oligonucleotides that is based on the self-organization of half-sliding complementary oligonucleotides into long duplexes (ca. 2 kb). These non-covalent assemblies possess single-stranded nicks or single-stranded gaps at regular intervals along the duplex backbones. The condensation behavior of nicked- and gapped-DNA duplexes was investigated using several cationic condensing agents. Transmission electron microscopy and light-scattering studies reveal that these DNA duplexes condense much more readily than short duplex oligonucleotides (i.e. 21 bp), and more easily than a 3 kb plasmid DNA. The polymeric condensing agents, poly-l-lysine and polyethylenimine, form condensates with nicked- and gapped-DNA that are significantly smaller than condensates formed by the 3 kb plasmid DNA. These results demonstrate the ability for DNA structure and topology to alter nucleic acid condensation and suggest the potential for the use of this form of DNA in the design of vectors for oligonucleotide and gene delivery. The results presented here also provide new insights into the role of DNA flexibility in condensate formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号