首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.  相似文献   

2.
Many insects harbour facultative symbiotic bacteria, some of which have been shown to provide resistance against natural enemies. One of the best-known protective symbionts is Hamiltonella defensa, which in pea aphid (Acyrthosiphon pisum) confers resistance against attack by parasitoid wasps in the genus Aphidius (Braconidae). We asked (i) whether this symbiont also confers protection against a phylogenetically distant group of parasitoids (Aphelinidae) and (ii) whether there are consistent differences in the effects of bacteria found in pea aphid biotypes adapted to different host plants. We found that some H. defensa strains do provide protection against an aphelinid parasitoid Aphelinus abdominalis. Hamiltonella defensa from the Lotus biotype provided high resistance to A. abdominalis and moderate to low resistance to Aphidius ervi, while the reverse was seen from Medicago biotype isolates. Aphids from Ononis showed no evidence of symbiont-mediated protection against either wasp species and were relatively vulnerable to both. Our results may reflect the different selection pressures exerted by the parasitoid community on aphids feeding on different host plants, and could help explain the maintenance of genetic diversity in bacterial symbionts.  相似文献   

3.
The European large raspberry aphid Amphorophora idaei Börner (Homoptera: Aphididae) is a virus vector of at least four plant virus complexes making it the most important aphid pest of raspberries in Northern Europe. An approach combining a bottom-up control (plant resistance) and a top-down control (an aphid parasitoid) using Aphidius ervi Haliday (Hymenoptera: Aphidiinae) was investigated in the laboratory. Aphid performance (pre-reproductive period, total reproductive output, lifespan and r m) were compared when reared on both a susceptible cultivar and a resistant cultivar with significantly poorer performance on the resistant cultivar. Parasitoid attack behaviour increased with aphid density on both cultivars, but was significantly lower on resistant plants than susceptible plants. Aphids showed a greater tendency to drop from the plant when feeding on resistant plants compared with susceptible plants. The significance of the results is discussed in the context of possible control of the aphid using these combined methods.  相似文献   

4.
The aphid parasitoid Lysiphlebus testaceipes is a potentially valuable biological control agent of Aphis gossypii a major worldwide pest of cotton. One means of increasing the abundance of a biological control agent is to provide an alternative host habitat adjacent to cropping, from which they can provide pest control services in the crop. Host selection and parasitism rate of an alternative host aphid, Aphis craccivora by L. testaceipes were studied in a series of experiments that tested its host suitability relative to A. gossypii on cotton, hibiscus and mungbean. Host acceptance, as measured by number of ovipositions was much greater in A. craccivora compared to A. gossypii, while more host aphids were accepted on mungbean than cotton. When given a choice L. testaceipes attacks more 4th instar and adult stages (63% and 70%, respectively) of both hosts than 2nd instar nymphs (47%). In a switching (host choice) experiment, L. testaceipes preferentially attacked A. craccivora on mungbean over A. gossypii on cotton. Observations of parasitoid contact with A. gossypii cornicle secretion suggest it provides a useful deterrent against parasitoid attack. From these experiments it appears L. testaceipes has a preference for A. craccivora and mungbean compared to A. gossypii and cotton, in this respect using A. craccivora and mungbean as alternative habitat may not work as the parasitoid is unlikely to switch away from its preferred host.  相似文献   

5.
The soybean aphid, Aphis glycines, is native to Asia, but during the last decade it has invaded North America, where it has spread to most soybean growing regions and become the most important insect pest of soybean. Current control of soybean aphid relies primarily on insecticides, but alternatives to insecticidal control are being explored, especially host plant resistance and biological control, which may interact positively or negatively. Research on host plant resistance to the soybean aphid has revealed six genes that affect resistance. We measured the impact of the two most studied resistance loci, Rag1 and Rag2, on two parasitoid species: Aphelinus glycinis, a recently described species from Asia, which is being introduced into the USA to control the soybean aphid, and Aphelinus certus, also from Asia but accidentally introduced into the USA. Resistance did not affect oviposition by either parasitoid species. However, resistance did reduce successful parasitism by A. glycinis, with each resistance allele causing a two-fold reduction in number of mummified aphids. The resistance alleles did not affect adult emergence, sex ratio, or the size of A. glycinis. For A. certus, the Rag1 resistance allele had no effect on parasitism, while the Rag2 resistance allele reduced parasitism four-fold. On the other hand, the Rag1 resistance allele increased the frequency of males among progeny and decreased female size of A. certus. Despite the reduction in parasitism, these parasitoids are nonetheless able to parasitize the soybean aphid on resistant soybean, which means that they should still contribute to the management of soybean aphid on resistant varieties.  相似文献   

6.
Antagonistic coevolution between hosts and parasites can result in negative frequency‐dependent selection and may thus be an important mechanism maintaining genetic variation in populations. Negative frequency‐dependence emerges readily if interactions between hosts and parasites are genotype‐specific such that no host genotype is most resistant to all parasite genotypes, and no parasite genotype is most infective on all hosts. Although there is increasing evidence for genotype specificity in interactions between hosts and pathogens or microparasites, the picture is less clear for insect host–parasitoid interactions. Here, we addressed this question in the black bean aphid (Aphis fabae) and its most important parasitoid Lysiphlebus fabarum. Because both antagonists are capable of parthenogenetic reproduction, this system allows for powerful tests of genotype × genotype interactions. Our test consisted of exposing multiple host clones to different parthenogenetic lines of parasitoids in all combinations, and this experiment was repeated with animals from four different sites. All aphids were free of endosymbiotic bacteria known to increase resistance to parasitoids. We observed ample genetic variation for host resistance and parasitoid infectivity, but there was no significant host clone × parasitoid line interaction, and this result was consistent across the four sites. Thus, there is no evidence for genotype specificity in the interaction between A. fabae and L. fabarum, suggesting that the observed variation is based on rather general mechanisms of defence and attack.  相似文献   

7.
Soybean varieties that exhibit resistance to the soybean aphid Aphis glycines have been developed for use in North America. In principle, host-plant resistance to soybean aphid can influence the interactions between the soybean aphid and its natural enemies. Resistance could change the quality of soybean aphids as a food source, the availability of soybean aphids, or resistance traits could directly affect aphid predators and parasitoids. Here, we focus on the effect of soybean aphid resistance on the interactions between soybean aphids, the parasitoid Binodoxys communis (Hymenoptera: Braconidae), and predators of these two species. We determined whether host-plant resistance affected within-season persistence of B. communis by releasing parasitoids into resistant and susceptible soybean plots. We observed higher B. communis densities in susceptible soybean plots than in resistant plots. There were also higher overall levels of intraguild predation of B. communis in susceptible plots, although the per-capita risk of intraguild predation of B. communis was affected neither by plant genotype nor by aphid density. We discuss these effects and whether they were caused by direct effects of the resistant plants on B. communis or indirect effects through soybean aphid or predators.  相似文献   

8.
Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies.  相似文献   

9.
Insect parasitoids and their insect hosts represent a wide range of parasitic trophic relations that can be used to understand the evolution of biotic diversity on earth. Testing theories of coevolution between hosts and parasites is based on factors directly involved in host susceptibility and parasitoid virulence. We used controlled encounters with potential hosts of the Aphidius ervi wasp to elucidate behavioral and other phenotypic traits of host Acyrthosiphon pisum that most contribute to success or failure of parasitism. The host aphid is at an advanced stage of specialization on different crop plants, and exhibits intra-population polymorphism for traits of parasitoid avoidance and resistance based on clonal variation of color morph and anti-parasitoid bacterial symbionts. Randomly selected aphid clones from alfalfa and clover were matched in 5 minute encounters with wasps of two parasitoid lineages deriving from hosts of each plant biotype in a replicated transplant experimental design. In addition to crop plant affiliation (alfalfa, clover), aphid clones were characterized for color morph (green, pink), Hamiltonella defensa and Regiella insecticola symbionts, and frequently used behaviors in encounters with A. ervi wasps. A total of 12 explanatory variables were examined using redundancy analysis (RDA) to predict host survival or failure to A. ervi parasitism. Aphid color was the best univariate predictor, but was poorly predictive in the RDA model. In contrast, aphid host plant and symbionts were not significant univariate predictors, but significant predictors in the multivariate model. Aphid susceptibility to wasp acceptance as reflected in host attacks and oviposition clearly differed from its suitability to parasitism and progeny development. Parasitoid progeny were three times more likely to survive on clover than alfalfa host aphids, which was compensated by behaviorally adjusting eggs invested per host. Strong variation of the predictive power of intrinsic (body color) and extrinsic traits (symbionts, host plant), indicate that host variables considered as key predictors of outcomes strongly interact and cannot be considered in isolation.  相似文献   

10.
《Journal of Asia》2019,22(1):194-202
While chemical application can control aphid outbreaks, the overuse of insecticides can make aphids more resistant to these insecticides. These effects make strategies such as host plant resistance combined with biological control agents as an important part of alternative control methods. In this study, the performance of the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its parasitoid wasp, Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae) were determined on different pepper cultivars (California, Hamedan, Minab, Sabz-Farangi, Sabz-Ghalami, Semnan, Shahroud, and Tehran) in a growth chamber at 25 ± 1 °C, 60 ± 5% RH and a 16:8 h L:D photoperiod. The intrinsic rate of increase (r) of the aphid on the above-mentioned cultivars was 0.3203, 0.3891, 0.3594, 0.3152, 0.3512, 0.3032, 0.3352 and 0.2787 day−1, respectively. Comparison of the intrinsic rate of increase (r) on different pepper cultivars revealed that Hamedan was the most susceptible and Tehran was the most resistant cultivar. The parasitoids reared on the aphids fed on the susceptible cultivar (Hamedan) had a higher intrinsic rate of increase (0.2641 day−1) than those (0.2259 day−1) reared on the resistant cultivar (Tehran). These results demonstrated that the quality of host plant affected the performance of M. persicae and its parasitoid D. rapae.  相似文献   

11.
Honeydew is a sugar-rich resource excreted by many hemipteran species and is a key food source for other insect species such as ants and parasitoid wasps. Here, we evaluated the nutritional value of 14 honeydews excreted by 13 aphid species for the generalist aphid parasitoid Lysiphlebus testaceipes to test a series of hypotheses concerning variation in the nutritional value of honeydew. There was a positive correlation between the body sugar content of honeydew-fed parasitoids and their longevity. This information is valuable for biological control researchers because it demonstrates that the nutritional state of honeydew-fed parasitoids in the wild can indicate their fitness, independently of the honeydew source they have fed on.Although the carbohydrate content and longevity of L. testaceipes differed greatly among the different honeydews, we did not find a significant effect of aphid or host plant phylogeny on these traits. This result suggests that honeydew is evolutionarily labile and may be particularly subject to ecological selection pressures. This becomes apparent when considering host aphid suitability: Schizaphis graminum, one of the most suitable and commonly used hosts of L. testaceipes, produced honeydew of the poorest quality for the parasitoid whereas Uroleucon sonchi, one of the few aphids tested that cannot be parasitized by L. testaceipes, excreted the honeydew with the highest nutritional value. These data are consistent with the hypothesis that hemipterans are subject to selection pressure to minimize honeydew quality for the parasitoids that attack them.  相似文献   

12.
This study was performed to investigate the age-dependent functional response of Aphidius matricariae Haliday (Hymenoptera: Braconidae) at varying densities of tobacco aphid, Myzus persicae nicotianae Blackman (Hemiptera: Aphididae). Six densities (2, 4, 8, 16, 32, and 64 numbers) of third instar nymphs of M. persicae nicotianae were daily exposed to one pair of 1-day-old A. matricariae until the parasitoid female died. Each host aphid density was replicated 10 times. The experiments were conducted at constant environmental conditions (25 ± 1 °C, 70 ± 5% RH and 16:8h L:D photoperiod). The logistic regression model demonstrated that the functional response of A. matricariae was type III in the second day and type II in the first day and from third to the end of adult parasitoid lifetime. The handling time (Th) was lowest in the first day (0.2305 h) and highest in the sixth day (2.9296 h) of the parasitoid’s life. The searching efficiency (a) values were 0.0573, 0.0649, 0.0503, 0.0229, and 0.0077 h?1 in the first, third, fourth, fifth, and sixth days of the parasitoid’s life, respectively. Also, the b value for type III functional response was 0.0147 in the second day. The values of maximum attack rate (T/Th) ranged from 104.12 nymphs/24 h in the first day to 19.8 nymphs/24 h in the sixth day of parasitoid’s life. Based on the results, A. matricariae showed a high potential to control the population of tobacco aphid and the highest efficiency gained in the first half of the female parasitoid life.  相似文献   

13.
Using the biotechnological plant resistance for herbivore control with less reliance on chemicals in integrated pest management (IPM) programs critically depends on predictable interactions with no-target organisms of various trophic levels. Plant resistance to insect pests based on recombinant Bacillus thuringiensis could interfere with natural enemies of non target pests. Performance of the potato aphid parasitoid Aphidius nigripes was studied on the 'Superior-BT line transgenic for the CryllIA toxin of B. thuringiensis, resistance to the Colorado potato beetle; and none transformed 'Superior' line which served as control. Parasitoid survival was significantly lower on the 'Superior-BT' line compared to control. Adult females were largest on 'Superior' and smallest on BT potatoes. This difference was reflected on parasitoid fecundity, which was lowest on 'Superior-BT', and highest on Superior. The results indicate that factor of potato resistance to the Colorado potato beetle affected the fitness of a parasitold of the aphid Macrosiphum euphorbiae, a secondary pest of potato. The effects on the parasitoid were complex but were generally interpretable in terms of host aphid quality variation among potato lines used as food by the aphids during parasitoid development.  相似文献   

14.
The influence of wheat (Triticum aestivumL.) resistance, the parasitoid Aphidius rhopalosiphiDe Stephani-Perez (Hymenoptera: Braconidae) and the entomopathogenic fungus Pandora neoaphidis(Remaudière et Hennebert) Humber (Zygomycetes: Entomophthorales) on the density and population growth rate of the cereal aphid Sitobion avenae(F.) (Hemiptera: Aphididae) was studied under laboratory conditions. Partial wheat resistance was based on hydroxamic acids, a family of secondary metabolites characteristic of several cultivated cereals. The partial resistance of wheat cultivar Naofén, the action of the parasitoid and the joint action of the parasitoid and fungus, reduced aphid density. The lowest aphid densities were obtained with the combination of the parasitoid and the fungus, but wheat resistance under these circumstances did not improve aphid control. Significant reductions of population growth rate (PGR) of aphids were obtained with the joint action of wheat resistance and natural enemies. In particular, the combined effects of parasitoids and fungi showed significantly lower PGR than the control without natural enemies in both wheat cultivars. Our results support the hypothesis that wheat resistance and the utilization of biological control agents could be complementary strategies in an integrated pest management program against cereal aphids.  相似文献   

15.
1. Concerns about climate change often trigger the question whether physiological and behavioural responses of species will enable them to persist. However, species do not exist alone and are largely dependent on interactions with others within communities. 2. In the present study, a mechanistic approach is used to test the hypothesis that inter‐specific differences in metabolic response to unpredictable short‐term thermal changes can change the outcome of host–parasitoid behavioural interactions. 3. The effect of a drop or a rise of 5 °C on resting metabolic rates (RMR) of the main aphid pest of cereal crops in Western Europe, the host Sitobion avenae Fabricius and its main natural enemy, the parasitoid Aphidius rhopalosiphi De Stefani‐Perez was measured. Also, defence and attack behaviours were measured for host and parasitoid separately as well as in interaction, since behavioural strategies of both species largely determine parasitism success. 4. The results showed that, when no change in temperature occurred, parasitoids had the highest oviposition rate. However, only with a rise of temperature behavioural interactions were disrupted: the parasitoid attack rate decreased whereas the aphid defence rate increased. This alteration in behaviour was associated with a stronger thermal response of RMR in hosts than in parasitoids, suggesting that species‐specific thermal responses of RMR could give valuable information on changes in the outcome of species interactions under warm spells but not under cold ones. 5. It was shown that relatively modest thermal changes with non‐lethal effects can have profound consequences for interacting co‐evolved species which may affect ecosystem services, such as biological control of pest populations.  相似文献   

16.
Different forms of crop resistance developed against majorpotato pests such as the Colorado potato beetle (CPB), Leptinotarsadecemlineata, may be variously compatible with biological controlof secondary pests such as aphids. We compared the performance of theparasitoid Aphidius nigripes developing in the aphid hostMacrosiphum euphorbiae, on five potato lines, including atransgenic `Superior-BT' line expressing the CryIIIA toxin ofBacillus thuringiensis, which is specific to Coleoptera; andthe `NYL 235-4' line derived from Solanum berthaultii,characterized by relatively unspecific resistance to herbivores based onmoderately-high density of glandular trichomes. The other lines testedwere a `Kennebec-OCI' transgenic line expressing the protease inhibitorrice cystatin I (OCI), a potential resistance factor against coleopteranpests; and the commercial cultivars `Superior' and `Kennebec' used ascontrols. Parasitoid immature survival and adult size were reducedcompared to controls when the wasps developed on aphids fed the`Superior-BT' potato. In contrast, parasitoid size and fecundityincreased above control when the wasps developed on aphids fed the`Kennebec-OCI' potato. Parasitoids reached the adult stage faster andwere more fecund on `NYL 235-4' than control lines. The results indicatethat the different forms of potato resistance currently developed mainlyagainst the CPB had various unexpected effects on aphid parasitoidfitness. These effects on the parasitoid were complex but were generallyinterpretable in terms of host aphid quality variation among potatolines used as food by the aphids during parasitoiddevelopment.  相似文献   

17.
In order to reduce parasite‐induced mortality, hosts may be involved in mutualistic interactions in which the partner contributes to resistance against the parasite. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbours secondary bacterial endosymbionts, some of which have been reported to confer resistance against aphid parasitoids. Although this resistance often results in death of the developing parasitoid larvae, some parasitoid individuals succeed in developing into adults. Whether these individuals suffer from fitness reduction compared to parasitoids developing in pea aphid clones without symbionts has not been tested so far. Using 30 pea aphid clones that differed in their endosymbiont complement, we studied the effects of these endosymbionts on aphid resistance against the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae), host–parasitoid physiological interactions, and fitness of emerging adult parasitoids. The number of symbiont species in an aphid clone was positively correlated with a number of resistance measurements but there were also clear symbiont‐specific effects on the host–parasitoid interaction. As in previous studies, pea aphid clones infected with Hamiltonella defensa Moran et al. showed resistance against the parasitoid. In addition, pea aphid clones infected with Regiella insecticola Moran et al. and co‐infections of H. defensaSpiroplasma, R. insecticolaSpiroplasma, and R. insecticolaH. defensa showed reduced levels of parasitism and mummification. Parasitoids emerging from symbiont‐infected aphid clones often had a longer developmental time and reduced mass. The number of teratocytes was generally lower when parasitoids oviposited in aphid clones with a symbiont complement. Interestingly, unparasitized aphids infected with Serratia symbiotica Moran et al. and R. insecticola had a higher fecundity than unparasitized aphids of uninfected pea aphid clones. We conclude that in addition to conferring resistance, pea aphid symbionts also negatively affect parasitoids that successfully hatch from aphid mummies. Because of the link between aphid resistance and the number of teratocytes, the mechanism underlying resistance by symbiont infection may involve interference with teratocyte development.  相似文献   

18.
Defining host ranges in parasitoid insects is important both from a theoretical and an applied point of view. Based on the literature, some species seem able to use a wide range of hosts, while field studies indicate possible local host specialization. In koinobiont endoparasitoid species, such specialization could involve physiological processes. We tested the ability of two strains of the cosmopolitan and polyphagous parasitoid Diaeretiella rapae, to develop in three of its recorded aphid host species. Both strains produced high parasitism rates on the cabbage aphid Brevicoryne brassicae and the green peach aphid Myzus persicae but almost no progeny on the cherry-oat aphid Rhopalosiphum padi. This last species was less attacked by female parasitoids. Moreover, parasitoid eggs and larvae were smaller than in the two other host aphid species and their development was delayed. This abnormal development appeared to be due to an incomplete host regulation process, probably related to the low number and the size of teratocytes produced by D. rapae in R. padi individuals. Such a failure as far as gaining control of the host's metabolism is concerned could play an important role in shaping the host range of parasitoid insects, leading to local variation of the host spectrum in populations from various geographical areas.  相似文献   

19.
Biological control agents can be used as a complementary control measure that can be combined with resistant host plants to control pests. In this study, the effects of different canola cultivars (Karaj-1, Karaj-2, Karaj-3, Licord, Okapi, Opera, RGS003, Sarigol, Talaye and Zarfam) on the performance and life table parameters of the cabbage aphid, Brevicoryne brassicae, and its parasitoid, Diaeretiella rapae, were determined under laboratory conditions. Total fecundity of the cabbage aphid differed with cultivar, with the highest value (59.41 nymphs per female) of this parameter observed on Opera and the lowest (1.67) observed on RGS003. The highest and lowest intrinsic rates of increase (r) of the cabbage aphid were observed on Opera (0.331 day?1) and RGS003 (? 0.242 day?1) cultivars, respectively, suggesting these to be the most susceptible and most resistant cultivars to this pest. However, because the aphid did not settle and feed well on RGS003, it was not possible to determine demographic parameters for its parasitoid. Consequently, the Okapi cultivar, which was the most resistant cultivar to the cabbage aphid after RGS003, was used in this study to assess the parasitoid wasp. The parasitoid’s intrinsic rate of increase (r) varied from 0.426 day?1 on the susceptible cultivar (Opera) to 0.341 day?1 on the resistant canola cultivar Okapi. Aphid performance decreased 93% on the resistant canola cultivar, while parasitoid performance decreased only 20% on the resistant cultivar compared to more susceptible cultivar.  相似文献   

20.
Parasitoids are among the most important natural enemies of insects in many environments. Acyrthosiphon pisum, the pea aphid, is a common pest of the leguminous crops in temperate regions. Pea aphids are frequently attacked by a range of endoparasitic wasps, including the common aphidiine, Aphidius ervi. Immunity to parasitoid attack is thought to involve secondary symbiotic bacteria, the presence of which is associated with the death of the parasitoid egg. It has been suggested that there is a fecundity cost of resistance, as individuals carrying the secondary symbionts associated with parasitoid resistance have fewer offspring. Supporting this hypothesis, we find a positive relationship between fecundity and susceptibility to parasitoid attack. There is also a negative relationship between fecundity and off-plant survival time (which positively correlates with resistance to parasitoid attack). Taken together, these results suggest that the aphids can either invest in defence (parasitoid resistance, increased off-plant survival time) or reproduction, and speculate that this may be mediated by changes in the aphids' endosymbiont fauna. Furthermore, there is a positive relationship between aphid size and resistance, suggesting that successful resistance to parasitoid attack may involve physical, as well as physiological, defences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号