首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxoplasma gondii, an intracellular parasite, has two distinctive growth stages, namely rapidly growing tachyzoites and slowly growing bradyzoites. Here we report a unique physiological function of the last committed glycolytic enzyme of T. gondii, lactate dehydrogenase (TgLDH), which is present in two isoforms and expressed in a stage-specific manner. TgLDH1 is present in tachyzoites while TgLDH2 is found in bradyzoites. Using clonal transgenic parasites over-expressing either TgLDH1 or TgLDH2, we showed that the enzymatic activity, growth, and virulence of tachyzoites were unaffected by the presence of the recombinant protein. Interestingly, under alkaline conditions the presence of the recombinant TgLDH proteins increased the differentiation, as detected by the formation of cyst structures in vitro, while green fluorescent protein did not. The differentiation enhancement of the recombinant TgLDH1 and TgLDH2 strongly suggests that TgLDH1 and TgLDH2 have an important physiological function, in addition to being glycolytic enzymes and differentiation markers.  相似文献   

2.
Toxoplasma gondii can differentiate into tachyzoites or bradyzoites. To accelerate the investigation of bradyzoite differentiation mechanisms, we constructed a reporter parasite, PLK/DLUC_1C9, for a high-throughput assay. PLK/DLUC_1C9 expressed firefly luciferase under the bradyzoite-specific BAG1 promoter. Firefly luciferase activity was detected with a minimum of 102 parasites induced by pH 8.1. To normalize bradyzoite differentiation, PLK/DLUC_1C9 expressed Renilla luciferase under the parasite’s α-tubulin promoter. Renilla luciferase activity was detected with at least 102 parasites. By using PLK/DLUC_1C9 with this 96-well format screening system, we found that the protein kinase inhibitor analogs, bumped kinase inhibitors 1NM-PP1, 3MB-PP1, and 3BrB-PP1, had bradyzoite-inducing effects.  相似文献   

3.
Toxoplasma gondii undergoes stage conversion from tachyzoites to bradyzoites in intermediate hosts. There have been many reports on bradyzoite-specific genes which are thought to be involved in stage conversion. Here, we described a novel T. gondii deoxyribose phosphate aldolase-like gene (TgDPA) expressing predominantly in bradyzoites. The TgDPA gene encodes 286 amino acids having a predicted molecular weight of 31 kDa. Sequence analysis revealed that TgDPA had a deoxyribose phosphate aldolase (DeoC) domain with about 30% homology with its Escherichia coli counterpart. RT- and quantitative PCR analyses showed that the TgDPA gene was more expressed in bradyzoites and that its expression gradually increased during in vitro tachyzoite-to-bradyzoite stage conversion. A polyclonal antibody against recombinant TgDPA protein was raised in rabbits, and immunofluorescent analysis demonstrated that TgDPA was expressed in bradyzoites in vivo and in vitro. These findings indicate that the TgDPA gene is a new bradyzoite-specific marker and might play a role in bradyzoites.  相似文献   

4.
5.

Background

Large amounts of microarray expression data have been generated for the Apicomplexan parasite Toxoplasma gondii in an effort to identify genes critical for virulence or developmental transitions. However, researchers’ ability to analyze this data is limited by the large number of unannotated genes, including many that appear to be conserved hypothetical proteins restricted to Apicomplexa. Further, differential expression of individual genes is not always informative and often relies on investigators to draw big-picture inferences without the benefit of context. We hypothesized that customization of gene set enrichment analysis (GSEA) to T. gondii would enable us to rigorously test whether groups of genes serving a common biological function are co-regulated during the developmental transition to the latent bradyzoite form.

Results

Using publicly available T. gondii expression microarray data, we created Toxoplasma gene sets related to bradyzoite differentiation, oocyst sporulation, and the cell cycle. We supplemented these with lists of genes derived from community annotation efforts that identified contents of the parasite-specific organelles, rhoptries, micronemes, dense granules, and the apicoplast. Finally, we created gene sets based on metabolic pathways annotated in the KEGG database and Gene Ontology terms associated with gene annotations available at http://www.toxodb.org. These gene sets were used to perform GSEA analysis using two sets of published T. gondii expression data that characterized T. gondii stress response and differentiation to the latent bradyzoite form.

Conclusions

GSEA provides evidence that cell cycle regulation and bradyzoite differentiation are coupled. Δgcn5A mutants unable to induce bradyzoite-associated genes in response to alkaline stress have different patterns of cell cycle and bradyzoite gene expression from stressed wild-type parasites. Extracellular tachyzoites resemble a transitional state that differs in gene expression from both replicating intracellular tachyzoites and in vitro bradyzoites by expressing genes that are enriched in bradyzoites as well as genes that are associated with the G1 phase of the cell cycle. The gene sets we have created are readily modified to reflect ongoing research and will aid researchers’ ability to use a knowledge-based approach to data analysis facilitating the development of new insights into the intricate biology of Toxoplasma gondii.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-515) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
Antibody detection assays have long been the first line test to confirm infection with the zoonotic parasite Toxoplasma gondii. However, challenges exist with serological diagnosis, especially distinguishing between acute, latent and reactivation disease states. The sensitivity and specificity of serological tests might be improved by testing for antibodies against parasite antigens other than those typically found on the parasite surface during the acute stage. To this end, we analysed the reactivity profile of human sera, identified as positive for anti-Toxoplasma gondii IgG in traditional assays, by indirect immunofluorescence reactivity to acute stage intracellular tachyzoites and in vitro-induced latent stage bradyzoites. The majority of anti-Toxoplasma gondii IgG positive sera recognised both intracellularly replicating tachyzoites and in vitro-induced bradyzoites with varying patterns of immune-reactivity. Furthermore, anti-bradyzoite antibodies were not detected in sera that were IgM-positive/IgG-negative. These results demonstrate that anti-Toxoplasma gondii-positive sera may contain antibodies to a variety of antigens in addition to those traditionally used in serological tests, and suggest the need for further investigations into the utility of anti-bradyzoite-specific antibodies to aid in diagnosis of Toxoplasma gondii infection.  相似文献   

9.
10.
Glycolysis was thought to be the major pathway of energy supply in both fast‐replicating tachyzoites and slowly growing bradyzoites of Toxoplasma gondii. However, its biological significance has not been clearly verified. The genome of T. gondii encodes two lactate dehydrogenases (LDHs), which are differentially expressed in tachyzoites and bradyzoites. In this study, we knocked out the two LDH genes individually and in combination and found that neither gene was required for tachyzoite growth in vitro under standard growth conditions. However, during infection in mice, Δldh1 and Δldh1 Δldh2 mutants were unable to propagate and displayed significant virulence attenuation and cyst formation defects. LDH2 only played minor roles in these processes. To further elucidate the mechanisms underlying the critical requirement of LDH in vivo, we found that Δldh1 Δldh2 mutants replicated significantly more slowly than wild‐type parasites when cultured under conditions with physiological levels of oxygen (3%). In addition, Δldh1 Δldh2 mutants were more susceptible to the oxidative phosphorylation inhibitor oligomycin A. Together these results suggest that lactate fermentation is critical for parasite growth under physiological conditions, likely because energy production from oxidative phosphorylation is insufficient when oxygen is limited and lactate fermentation becomes a key supplementation.  相似文献   

11.
12.
13.
14.
15.
16.
In order to elucidate the role of T cell subsets in protective immunity against infection with high virulent and low virulent strains of Toxoplasma gondii, monoclonal antibodies specific for T cell subsets were injected into mice before immunization or challenge infection. Treatment of mice with monoclonal antibody to either L3T4+ or Lyt-2+ T cells before they were immunized with Toxoplasma cell homogenate prepared from high virulent RH strain tachyzoites markedly reduced survival after mice were challenged with low virulent bradyzoites of the Beverley strain. Thus, induction of protective immunity against bradyzoites of the Beverley strain requires the presence of both L3T4+ and Lyt-2+ T cells. In contrast, mice injected with living bradyzoites of the low virulent Beverley strain after immunization with Toxoplasma cell homogenate acquired protective immunity against high virulent tachyzoites of the RH strain. Lyt-2+ T cells alone appear to be final effector cells for protection against the challenge with high virulent RH strain tachyzoites, since treatment of the bradyzoite-immune mice with anti-Lyt-2 antibody, but not anti-L3T4 antibody, before challenge significantly increased mortality.  相似文献   

17.
18.
BackgroundGallbladder cancer (GBC) is a highly lethal malignancy that carries an extremely poor prognosis due to its chemoresistant nature. Cisplatin (CDDP) is a first-line chemotherapeutic for GBC; however, patients experienced no benefit when treated with CDDP alone. The underlying mechanisms of CDDP resistance in GBC remain largely unknown.MethodsAgilent mRNA microarray analysis was performed between paired GBC and paracarcinoma to explore differentially expressed genes that might underlie drug resistance. Gene Set Enrichment Analysis (GSEA) was employed to identify key genes mediating CDDP resistance in GBC, and immunohistochemistry was performed to validate protein expression and test correlations with clinicopathological features. In vitro and in vivo functional assays were performed to investigate the proteins’ roles in CDDP resistance.ResultsOlfactomedin 4 (OLFM4) was differentially expressed between GBC and paracarcinoma and had the highest rank metric score in the GSEA. OLFM4 expression was increasingly upregulated from chronic cholecystitis to GBC in clinical tissue samples, and OLFM4 depletion decreased GBC cell proliferation and invasion. Interestingly, downregulation of OLFM4 reduced ARL6IP1 (antiapoptotic factor) expression and sensitized GBC cells to CDDP both in vitro and in vivo. The evidence indicated that CDDP could significantly increase Bax and Bad expression and activate caspase-3 cascade in OLFM4-depleted GBC cells through ARL6IP1. Clinically, lower OLFM4 expression was associated with good prognosis of GBC patients.ConclusionsOur results suggest that OLFM4 is an essential gene that contributes to GBC chemoresistance and could serve as a prognostic biomarker for GBC. Importantly, OLFM4 could be a potential chemotherapeutic target.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号