首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adventitious rooting is a complex developmental response affected by genetic and environmental factors. Radiation quality effects on adventitious rooting depend on characteristics such as species, growth stage, irradiance, spectral quality, and time of exposure. Eucalyptus is an essential genus for the paper industry, and high yield plantations depend on adventitious rooting of selected genotypes. This work addressed two hypotheses: (1) radiation quality equally affects adventitious rooting in Eucalyptus species of different recalcitrance; (2) adventitious rooting outcome depends on both donor plant and cutting radiation quality treatments. To that end, the easy-to-root Eucalyptus grandis and the recalcitrant Eucalyptus globulus were evaluated. The effect of white, blue, red and far-red radiation enrichment on microcuttings and donor plants of both species was evaluated in relation to rooting. There was no effect of radiation quality on adventitious rooting of E. grandis or when radiation treatments were applied to E. globulus microcuttings. In contrast, donor plants of E. globulus, grown in medium devoid of sucrose and exposed to far-red radiation, yielded microcuttings showing higher rooting percentage, even in the absence of exogenous auxin in the rooting medium. Sucrose in donor plant medium abolished the positive effect of far-red radiation. An increase in endogenous soluble sugars and starch contents in basal microcuttings was associated with far-red radiation treatment of donor plants. These results underline the importance of appropriate carbohydrate partitioning in donor plants for adventitious rooting of cuttings and provide a basis for understanding and overcoming rooting recalcitrance in E. globulus clones.  相似文献   

2.

Background

Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts.

Results

The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus.

Conclusions

Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1598-x) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
Eucalyptus urograndis is a hybrid eucalyptus of major economic importance to the Brazilian pulp and paper industry. Although widely used in forest nurseries around the country, little is known about the biochemical changes imposed by environmental stress in this species. In this study, we evaluated the changes in the stem proteome after short-term stimulation by exposure to low temperature. Using two-dimensional gel electrophoresis coupled to high-resolution mass spectrometry-based protein identification, 12 proteins were found to be differentially regulated and successfully identified after stringent database searches against a protein database from a closely related species (Eucalyptus grandis). The identification of these proteins indicated that the E. urograndis stem proteome responded quickly to low temperature, mostly by down-regulating specific proteins involved in energy metabolism, protein synthesis and signaling. The results of this study represent the first step in understanding the molecular and biochemical responses of E. urograndis to thermal stress.  相似文献   

5.
The genus Eucalyptus includes over 700 species, some of which are the most widely planted hardwoods worldwide. Each species and subspecies of Eucalyptus present different characteristics regarding its wood quality and yield. This fact makes it very important to work with known species/subspecies so as to optimize handling and conservation of forest resources. Some of them are morphologically very similar, making it difficult to differentiate by simple observation. This is the case with Euclyptus globulus ssp globulus and E. globulus ssp maidenii, which can only be distinguished in the adult tree. These issues can be avoided using well-characterized seeds. This can be quite expensive, especially for the small growers. An alternative approach is to develop simple methods for the differentiation of the two subspecies. In this work, we develop a quick method, based on SCAR molecular markers derived from RAPD molecular markers, for the differentiation of the subspecies of E. globulus, in particular E. globulus ssp globulus and E. globulus ssp maidenii.  相似文献   

6.
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.  相似文献   

7.
Summary We report the delignification ofPinus radiata D Don,Eucalyptus globulus andEucalyptus grandis woods (formic acid treated and untreated) by 2 h treatment with a hemin/hydrogen peroxide system. The untreated chips and sawdust ofE. globulus were 30% and 50% delignified respectively. No significant effects were found forP. radiata sawdust;P. radiata treated chips (organosolv pulp) did not show any further delignification upon hemin/peroxide action, 25% delignification was achieved in untreated chips. In the case ofE. grandis untreated wood the delignification was better in sawdust than in chips, but in smaller percentage than in the otherEucalyptus species. This relation is maintained in substrates, treated with formic acid or untreated. The delignification of chips in both species ofEucalyptus was improved when they were pre-treated with formic acid. The loss of lignin in theE. grandis andE. globulus sawdust (pre-treated with formic acid) was 79% and 75% respectively.  相似文献   

8.
9.

Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.

  相似文献   

10.
Species and hybrids of Eucalyptus are the world's most widely planted hardwood trees. They are cultivated across a wide range of latitudes and therefore environmental conditions. In this context, comprehensive metabolomics approaches have been used to assess how different temperature regimes may affect the metabolism of three species of Eucalyptus, E. dunnii, E. grandis and E. pellita.Young plants were grown for 53 d in the greenhouse and then transferred to growth chambers at 10°C, 20°C or30°C for another 7 d. In all three species the leaf chlorophyll content was positively correlated to temperature, and in E.pellita the highest temperature also resulted in a significant increase in stem biomass. Comprehensive metabolomics was performed using untargeted gas chromatography mass spectrometry(GC-MS) and liquid chromatography(LC)-MS.This approach enabled the comparison of the relativeabundance of 88 polar primary metabolites from GC-MS and625 semi-polar secondary metabolites from LC-MS. Using principal components analysis, a major effect of temperature was observed in each species which was larger than that resulting from the genetic background. Compounds mostly affected by temperature treatment were subsequently selected using partial least squares discriminant analysis and were further identified. These putative annotations indicated that soluble sugars and several polyphenols, including tannins, triterpenes and alkaloids were mostly influenced.  相似文献   

11.
12.
Recalcitrance of plant biomass is closely related to the presence of the phenolic heteropolymer lignin in secondary cell walls, which has a negative effect on forage digestibility, biomass‐to‐biofuels conversion and chemical pulping. The genus Eucalyptus is the main source of wood for pulp and paper industry. However, when compared to model plants such as Arabidopsis thaliana and poplar, relatively little is known about lignin biosynthesis in Eucalyptus and only a few genes were functionally characterized. An efficient, fast and inexpensive in vitro system was developed to study lignification in Eucalyptus globulus and to evaluate the potential role of candidate genes in this biological process. Seedlings were grown in four different conditions, in the presence or absence of light and with or without sucrose in the growth medium, and several aspects of lignin metabolism were evaluated. Our results showed that light and, to a lesser extent, sucrose induced lignin biosynthesis, which was followed by changes in S/G ratio, lignin oligomers accumulation and gene expression. In addition, higher total peroxidase activity and differential isoperoxidase profile were observed when seedlings were grown in the presence of light and sucrose. Peptide sequencing allowed the identification of differentially expressed peroxidases, which can be considered potential candidate class III peroxidases involved in lignin polymerization in E. globulus.  相似文献   

13.
The volatile leaf oils were analysed from adult leaves of five Eucalyptus species growing in a common environment. The trial consisted of two provenances of the species E. globulus and one provenance each of E. nitens and E. denticulata from the southern blue gum group and two provenances each of the species E. delegatensis and E. regnans from the ash group. Oil yields from adult leaves of E. nitens (0.7% dry wt.) and E. denticulata (0.8%) were markedly lower than those from the other three species (3.0–6.1%). Volatile leaf oils of E. delegatensis and E. regnans were rich in α- and β-phellandrene, cis- and trans-p-menth-2-en-1-ol, while E. regnans was also rich in α-, β- and γ-eudesmol. In contrast, volatile leaf oils of E. globulus were rich in 1,8-cineole and α-pinene and E. denticulata rich in γ-terpinene and p-cymene. Oil composition of E. nitens was intermediate between E. globulus and E. denticulata. Differences in oil yield and oil composition between species indicated a strong genetic basis for these variables.  相似文献   

14.
Comparative genetic mapping in interspecific pedigrees presents a powerful approach to study genetic differentiation, genome evolution and reproductive isolation in diverging species. We used this approach for genetic analysis of an F1 hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.) and Eucalyptus globulus (Labill.). This wide interspecific cross is characterized by hybrid inviability and hybrid abnormality. Approximately 20% of loci in the genome of the F1 hybrid are expected to be hemizygous due to a difference in genome size between E. grandis (640 Mbp) and E. globulus (530 Mbp). We investigated the extent of colinearity between the two genomes and the distribution of hemizygous loci in the F1 hybrid using high-throughput, semi-automated AFLP marker analysis. Two pseudo-backcross families (backcrosses of an F1 individual to non-parental individuals of the parental species) were each genotyped with more than 800 AFLP markers. This allowed construction of de novo comparative genetic linkage maps of the F1 hybrid and the two backcross parents. All shared AFLP marker loci in the three single-tree parental maps were found to be colinear and little evidence was found for gross chromosomal rearrangements. Our results suggest that hemizygous AFLP loci are dispersed throughout the E. grandis chromosomes of the F1 hybrid.Communicated by O. Savolainen  相似文献   

15.
16.
Understanding genome differentiation is important to compare and transfer genomic information between taxa, such as from model to non-model organisms. Comparative genetic mapping can be used to assess genome differentiation by identifying similarities and differences in chromosome organization. Following release of the assembled Eucalyptus grandis genome sequence (January 2011; ), a better understanding of genome differentiation between E. grandis and other commercially important species belonging to the subgenus Symphyomyrtus is required. In this study, comparative genetic mapping analyses were conducted between E. grandis, Eucalyptus urophylla, and Eucalyptus globulus using high-density linkage maps constructed from Diversity Array Technology and microsatellite molecular markers. There were 236–393 common markers between maps, providing the highest resolution yet achieved for comparative mapping in Eucalyptus. In two intra-section comparisons (section MaidenariaE. globulus and section LatoangulataeE. grandis vs. E. urophylla), ∼1% of common markers were non-syntenic and within chromosomes 4.7–6.8% of markers were non-colinear. Consistent with increasing taxonomic distance, lower synteny (6.6% non-syntenic markers) was observed in an inter-section comparison between E. globulus and E. grandis × E. urophylla consensus linkage maps. Two small chromosomal translocations or duplications were identified in this comparison representing possible genomic differences between E. globulus and section Latoangulatae species. Despite these differences, the overall high level of synteny and colinearity observed between section MaidenariaLatoangulatae suggests that the genomes of these species are highly conserved indicating that sequence information from the E. grandis genome will be highly transferable to related Symphyomyrtus species.  相似文献   

17.
18.
Plants produce polygalacturonase-inhibiting proteins (PGIPs) as part of their defense against disease. PGIPs have leucine-rich motifs, a characteristic shared by many proteins involved in plant resistance against pathogens. The objective of this study was to clone and analyse the partial sequences of the pgip genes from five selected commercially important Eucalyptus species. Genomic DNA from E. grandis, E. urophylla, E. camaldulensis, E. nitens and E. saligna was isolated from young leaves and used as the template in PCR reactions. Primers PC1, previously described, and Per3, developed in this study, were used in a degenerate PCR reaction to amplify a pgip fragment. A PCR fragment of 909 bp was amplified from each Eucalyptus spp., cloned and sequenced. The Eucalyptus pgip genes were highly conserved (98–100% identity). Analysis of the deduced amino-acid sequences revealed high similarities (44–94%) with other known PGIPs. In general, PGIPs have high homologies within genera as is the case in the genus Citrus. These observations strengthen the belief that PGIP plays an important role in plants. Received: 19 June 2000 / Accepted: 31 August 2000  相似文献   

19.
To improve our understanding of genetic mechanisms underlying complex traits in plants, a comprehensive analysis of gene variants is required. Eucalyptus is an important forest plantation genus that is highly outbred. Trait dissection and molecular breeding in eucalypts currently relies on biallelic single-nucleotide polymorphism (SNP) markers. These markers fail to capture the large amount of haplotype diversity in these species, and thus multi-allelic markers are required. We aimed to develop a gene-based haplotype mining panel for Eucalyptus species. We generated 17 999 oligonucleotide probe sets for targeted sequencing of selected regions of 6293 genes implicated in growth and wood properties, pest and disease resistance, and abiotic stress responses. We identified and phased 195 834 SNPs using a read-based phasing approach to reveal SNP-based haplotypes. A total of 8915 target regions (at 4637 gene loci) passed tests for Mendelian inheritance. We evaluated the haplotype panel in four Eucalyptus species (E. grandis, E. urophylla, E. dunnii and E. nitens) to determine its ability to capture diversity across eucalypt species. This revealed an average of 3.13–4.52 haplotypes per target region in each species, and 33.36% of the identified haplotypes were shared by at least two species. This haplotype mining panel will enable the analysis of haplotype diversity within and between species, and provide multi-allelic markers that can be used for genome-wide association studies and gene-based breeding approaches.  相似文献   

20.
Eucalyptus or guava rust caused by Puccinia psidii is a serious disease of Eucalyptus and other Myrtaceae. In Uruguay, it has been previously found on Eucalyptus globulus and Psidium brasiliensis. Almost nothing is known regarding the occurrence of this pathogen on other Eucalyptus species or native Myrtaceae in that country. In this study, we determined the presence of P. psidii on Eucalyptus species and native Myrtaceae trees in Uruguay and evaluated the pathogenicity of specimens from native myrtaceous hosts on E. globulus and E. grandis. Phylogenetic analyses based on the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA operon were used to confirm pathogen identity. Comparisons of ITS sequences confirmed the identity of P. psidii on Eucalyptus globulus, E. grandis, Myrcianthes pungens, and Myrrhinium atropurpureum var. octandrum. This is the first report of P. psidii on M. atropurpureum var. octandrum. Pathogenicity tests showed that isolates from native Myrtaceae could infect both Eucalyptus species tested, indicating a strong biological relationship between both introduced and native Myrtaceae. This study supplies relevant field data, morphological information, molecular phylogenetic analyses and infection studies that contribute to a better understanding of an important and little studied pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号