首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins are composed exclusively of l-amino acids. Among elderly individuals, however, d-aspartic acid (d-Asp) residues have been found in eye lens and brain, as well as in other tissues. The presence of d-Asp may change the higher-order structure of a protein, which in turn may have a role in age-related disorders such as cataract and Alzheimer's disease. d-Asp results from the spontaneous racemization of Asp residues in susceptible proteins. During aging, natural lα-Asp residues in proteins are non-enzymatically isomerized via a succinimidyl intermediate to l-β-, d-α- and d-β-isomers. This isomerization does not happen uniformly, but instead occurs at specific residues that are susceptible to isomerization due to their sequence or structural context. Thus, it is necessary to establish the nature of each individual Asp residue in susceptible proteins. Recently, a new method based on LC-MS/MS for the analysis of Asp isomerization at specific protein sites has been described. In this review, we first show that the homochirality of amino acids in proteins is not guaranteed throughout life. We then describe the development of a new method for protein-bound d-amino acid analysis, and discuss the negative influence that d-Asp has on protein structure and function.  相似文献   

2.
Dβ (or D-iso)- and Lβ- (or iso)- aspartyl (Asp) residues are accumulated in aged lens crystallins and amyloid beta (Aβ) proteins, respectively, as a result of spontaneous, nonenzymatic isomerization of normal Lα-Asp. To explore why such uncommon Asp isomers are accumulated, the stability of Lα-, Lβ-, and Dβ-Asp was compared in view of the staggered side-chain conformers. By using cylindrin (KVKVLGD7VIEV) from αB-crystallin and Aβ17-25 (L17VFF20AED23)VG25) containing Asp isomers, the vicinal spin-spin coupling constants of Asp Hα-Hβ1 and Hα-Hβ2 were quantified by high-resolution solution 1H NMR. It was found that the trans conformer was extremely preferred in Dβ-Asp7 side-chain of cylindrin. In Aβ17–25, the side chain of Lβ-Asp23 was likely to adopt trans conformer, while gauche conformers were rather rich in Lα-Asp23. In gauche conformers, the close distance between Asp carboxylate carbon (CCOO-) and backbone nitrogen (N) next to Asp is advantageous to the intramolecular cyclization to form succinimide intermediate, followed by the conversion from α- to β-Asp. The cyclization is limited in the trans conformer because of the long distance between CCOO- and N, to keep Dβ- or Lβ-Asp stable. This would be the reason for the site specificity of Asp isomerization in proteins. The higher population of trans conformer in Asp side chain, the less isomerization of Asp as shown as Asp76 in αA-crystallin. The stability and less reactivity of normal Asp and its isomers are the potential factors to determine whether or not the abnormal accumulation is permitted in aged crystallins and Aβ.  相似文献   

3.
Many post-translational modifications such as oxidation, deamidation and isomerization of amino acid residues occur in lens proteins with aging. One such modification, isomerization of aspartate in lens α-crystallin, has been well studied by amino acid enantiomer analysis and LC-MS/MS. LC-MS/MS can quickly and easily identify D- and L-amino acid-containing peptides without purification of lens protein mixtures. However, this method has a weak point in that isomeric peptides of major components are detected predominantly, while those from minor proteins such as β- and γ-crystallins have not been fully determined. Therefore, the isomerization of amino acid residues in β- and γ-crystallin families has been little studied. To solve those problems and detect the isomerization of Asp residues in lens βB2-crystallin, the main component of the β-crystallin family, here we have developed steps for sample fractionation before d/l analysis based on either LC-MS/MS or amino acid derivatization to diastereoisomers followed by RP-HPLC. To capture a small amount of peptide, a multiple reaction monitoring (MRM) method based on quadrupole MS/MS (Q-MS) was applied to the water-soluble fraction of whole lens. The d/l analysis based on both LC-MS/MS and diastereoisomer formation showed the presence of multiple isomerization sites, including Asp4, Asp83, Asp92 and Asp192, in βB2-crystallin in aged lens. These isomerization sites were confirmed to exist in an age-dependent manner by Q-MS. Synthetic peptides of βB2-crystallin containing different isomers of Asp showed differential elution profiles during RP-HPLC, indicating differences in the local structure or hydrophobicity of Asp-isomer-containing peptides. These results suggest that the isomerization sites are distributed on exposed regions of βB2-crystallin and thus likely to have an impact on crystallin subunit–subunit interactions, induce abnormal crystallin aggregation, and contribute to senile cataract formation in aged lens.  相似文献   

4.
The l-α-Asp residues in peptides or proteins are prone to undergo nonenzymatic reactions to form l-β-Asp, d-α-Asp, and d-β-Asp residues via a succinimide five-membered ring intermediate. From these three types of isomerized aspartic acid residues, particularly d-β-Asp has been widely detected in aging tissue. In this study, we computationally investigated the cyclization of α- and β-Asp residues to form succinimide with dihydrogen phosphate ion as a catalyst (H2PO4). We performed the study using B3LYP/6-31 + G(d,p) density functional theory calculations. The comparison of the activation barriers of both residues is discussed. All the calculations were performed using model compounds in which an α/β-Asp-Gly sequence is capped with acetyl and methylamino groups on the N- and C-termini, respectively. Moreover, H2PO4 catalyzes all the steps of the succinimide formation (cyclization-dehydration) acting as a proton-relay mediator. The calculated activation energy barriers for succinimide formation of α- and β-Asp residues are 26.9 and 26.0 kcal mol 1, respectively. Although it was experimentally confirmed that β-Asp has higher stability than α-Asp, there was no clear difference between the activation barriers. Therefore, the higher stability of β-Asp residue than α-Asp residue may be caused by an entropic effect associated with the succinimide formation.  相似文献   

5.
Unusual amino acid residues such as L-β-aspartyl (Asp), D-α-Asp, and D-β-Asp have been detected in proteins and peptides such as α-crystallin in the lens and β-amyloid in the brain. These residues increase with age, and hence they are associated with age-related diseases. The enzyme protein D-aspartyl (L-isoaspartyl) O-methyltransferase (PIMT) can revert these residues back to the normal L-α-Asp residue. PIMT catalyzes transmethylation of S-adenosylmethionine to L-β-Asp and D-α-Asp residues in proteins and peptides. In this work, the substrate recognition mechanism of PIMT was investigated using docking and molecular dynamics simulation studies. It was shown that the hydrogen bonds of Ser60 and Val214 to the carboxyl group of Asp are important components during substrate recognition by PIMT. In addition, specific hydrogen bonds were observed between the main chains of the substrates and those of Ala61 and Ile212 of PIMT when PIMT recognized L-β-Asp. Hydrophobic interactions between the (n-1) residue of the substrates and Ile212 and Val214 of PIMT may also have an important effect on substrate binding. Volume changes upon substrate binding were also evaluated in the context of possible application to interpretation of size exclusion chromatography data.  相似文献   

6.
Although proteins consist exclusively of L-amino acids, we have reported that aspartyl (Asp) 58 and Asp 151 residues of αA-crystallin of eye lenses from elderly cataract donors are highly inverted and isomerized to D-β, D-α and L-β-Asp residues through succinimide intermediates. Of these Asp isomers, large amounts of D-β- and L-β-isomers are present but the amount of D-α-isomer is not significant. The difference in abundance of the Asp isomers in the protein may be due to the rate constants for the formation of the isomers. However, the kinetics have not been well defined. Therefore, in this study, we synthesized a peptide corresponding to human αA-crystallin residues 55 to 65 (T55VLD58SGISEVR65) and its isomers in which L-α-Asp at position 58 was replaced with L-β-, D-β- and D-α-Asp and determined the rate of isomerization and inversion of Asp residues under physiological conditions (37°C, pH7.4). The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 3 times higher than the rate constant for dehydration from L-β-Asp peptide to L-succinimidyl peptide. The rate constant for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide was about 5 times higher than the rate constant for hydrolysis from L-succinimidyl peptide to L-α-Asp peptide. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 2 times higher than the rate constant for dehydration from D-α-Asp peptide to D-succinimidyl peptide. The rate constants for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide and for hydrolysis from D-succinimidyl peptide to D-β-Asp peptide were almost equal. Using these rate constants, we calculated the change in the abundance ratios of the 4 Asp isomers during a human lifespan. This result is consistent with the fact that isomerized Asp residues accumulate in proteins during the ageing process.  相似文献   

7.
Proteins have been considered to consist exclusively of l-amino acids in living tissues. However, our previous studies showed that two specific aspartyl (Asp) residues in αA- and αB-crystallins from human eye lenses invert to the d-isomers to a high degree during aging. The reaction is also accompanied by isomerization into a form containing β-Asp (isoaspartate) residues. The appearance of d- and β-Asp in a protein potentially induces large changes to the higher order structure of the protein as well as to its function. However, it remains unclear whether the formation of the Asp isomer is the direct trigger of the change to the higher order structure and function. In this study, in order to clarify the effect of the inversion to d-isomers in a protein, we synthesized peptides corresponding to the 70–88 (KFVIFLDVKHFSPEDLTVK) fragment of human αA-crystallin and its corresponding diastereoisomers in which lα-Asp was replaced with lβ-Asp, dα-Asp, and dβ-Asp at position 76 and compared their biochemical properties with that of normal peptide. The peptides containing abnormal isomers (lβ-Asp, dα-Asp, and dβ-Asp residues, respectively) were more hydrophilic than the normal peptide (containing lα-Asp), lost β-sheet structure and changed to random structures. The normal peptide promoted the aggregation of insulin while the other three isomers suppressed the aggregation of insulin. This is the first evidence that a single substitution of an Asp isomer in a peptide induces a large change to the properties of the peptide.  相似文献   

8.
The generation of amyloid β (Aβ) toxic oligomers during the formation of senile plaques and amyloid fibrils is thought to play a central role in the onset and progression of Alzheimer’s disease. Aβ production is a physiological process, but the factors that trigger a transition to pathogenic Aβ aggregation remain unknown. Posttranslational modifications of Aβ could potentially induce the transition. The effects of Aβ and its modified forms containing isomerized Asp7, phosphorylated Ser8, or both, were studied in SH-SY5Y human neuroblastoma cells. Asp7 isomerization of was shown to increase cytotoxicity of both the intact and phosphorylated Aβ. An increase in cytotoxicity was not associated with an increased internalization of the isomerized Asp7-containing Aβ or an influence on the function of mitochondria or reduced glutathione and reactive oxygen species levels. The nitric oxide (NO) level was identified as a determinant of the cytotoxic effect of isomerized Asp7-containing peptides, a decrease in NO level correlating with an increase in cytotoxicity.  相似文献   

9.
The objective of this study was to explain the increased propensity for the conversion of cyclo-(1,7)-Gly-Arg-Gly-Asp-Ser-Pro-Asp-Gly-OH (1), a vitronectin-selective inhibitor, to its cyclic imide counterpart cyclo-(1,7)-Gly-Arg-Gly-Asu-Ser-Pro-Asp-Gly-OH (2). Therefore, we present the conformational analysis of peptides 1 and 2 by NMR and molecular dynamic simulations (MD). Several different NMR experiments, including COSY, COSY-Relay, HOHAHA, NOESY, ROESY, DQF-COSY and HMQC, were used to: (a) identify each proton in the peptides; (b) determine the sequential assignments; (c) determine the cis-trans isomerization of X-Pro peptide bond; and (d) measure the NH-HCalpha coupling constants. NOE- or ROE-constraints were used in the MD simulations and energy minimizations to determine the preferred conformations of cyclic peptides 1 and 2. Both cyclic peptides 1 and 2 have a stable solution conformation; MD simulations suggest that cyclic peptide 1 has a distorted type I beta-turn at Arg2-Gly3-Asp4-Ser5 and cyclic peptide 2 has a pseudo-type I beta-turn at Ser5-Pro6-Asp7-Gly1. A shift in position of the type I beta-turn at Arg2-Gly3-Asp4-Ser5 in peptide 1 to Ser5-Pro6-Asp7-Gly1 in peptide 2 occurs upon formation of the cyclic imide at the Asp4 residue. Although the secondary structure of cyclic peptide 1 is not conducive to succinimide formation, the reaction proceeds via neighbouring group catalysis by the Ser5 side chain. This mechanism is also supported by the intramolecular hydrogen bond network between the hydroxyl side chain and the backbone nitrogen of Ser5. Based on these results, the stability of Asp-containing peptides cannot be predicted by conformational analysis alone; the influence of anchimeric assistance by surrounding residues must also be considered.  相似文献   

10.
Fujii N  Kawaguchi T  Sasaki H  Fujii N 《Biochemistry》2011,50(40):8628-8635
The lens proteins are composed of α-, β-, and γ-crystallins that interact with each other to maintain the transparency and refractive power of the lens. Because the lens crystallins are long-lived proteins, they undergo various post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation. In βB2-crystallin, which is the most abundant β-crystallin, the deamidation of asparagine and glutamine residues has been reported. Here, we found that the aspartyl (Asp) residue at position 4 of βB2-crystallin in the lenses of elderly human individuals undergoes a significant degree of inversion and isomerization to the biologically uncommon residue D-β-Asp. Surprisingly, the D/L ratio of β-Asp at position 4 in βB2-crystallin from elderly donors (67-77 year old) was 0.88-3.21. A D/L ratio of amino acids greater than 1.0 is defined as an inversion of configuration from the L- to D-form, rather than a racemization. These extremely high D/L ratios are equivalent to those of Asp-58 and Asp-151 (D/L ratio: 3.1 for Asp-58 and 5.7 for Asp-151) in αA-crystallin from elderly donors (~80 year old) as reported previously. Initially, we identified specific Asp residues in the β-crystallin family of proteins that undergo a high degree of inversion. These results show that the isomerization and inversion of Asp residues occurs both in the α- and β-crystallins of the lens. Inversion of these Asp residues directly affects the higher order structure of the protein. Hence, this modification may change crystallin-crystallin interactions and disrupt the function of crystallins in the lens.  相似文献   

11.
The major soluble eye lens protein, αA-crystallin, has a very long half-life. Thus, many post-translational modifications, including stereoinversion, have been found in its constituent amino acids. We determine the rates of β-linkage isomerization, which is the main reaction through the formation of a succinimide intermediate, of specific Asp residues of recombinant human αA-crystallin protein by simple RP-HPLC method. Kinetic analyses of the β-linkage isomerization were performed on the three Asp residues of αA-crystallin, (58)Asp, (84)Asp, and (151)Asp, because the d/l ratios of both the (58)Asp and (151)Asp residues were higher than 1.0 in the αA-crystallin isolated from aged human eye lens. The β-linkage isomerizations of both the (58)Asp and (84)Asp residues were suppressed in the recombinant protein by approximately 0.4-0.5 times compared to those in the synthetic peptide below 50 °C, whereas the isomerization of the (151)Asp residue occurred at the same rate for the whole protein and synthetic fragmentary peptide. The suppression of (58)Asp isomerization in the recombinant protein relaxed to some extent when the αA-crystallin protein was incubated at a high temperature. The far-UV CD spectra showed that the secondary structure of the protein was partially disordered at temperatures greater than 60 °C in the recombinant αA-crystallin protein. These results suggest that the (58)Asp residue was restrained from forming the succinimide intermediate by the higher order structure of the αA-crystallin protein, and that the structural environment around the (151)Asp residue of the αA-crystallin was similar to that of the synthetic fragmentary peptide with respect to succinimide formation. The difference in the influence of the secondary structure of the αA-crystallin protein inverts the order of the succinimide formations of the (58)Asp and (151)Asp residues in the recombinant protein as compared with the order in the synthetic fragmentary peptides.  相似文献   

12.
A new isoform of the light chain of a fully human monoclonal immunoglobulin gamma2 (IgG2) antibody panitumumab against human epidermal growth factor receptor (EGFR) was generated by in vitro aging. The isoform was attributed to the isomerization of aspartate 92 located between phenylalanine 91 and histidine 93 residues in the antigen-binding region. The isomerization rate increased with increased temperature and decreased pH. A size-exclusion chromatography binding assay was used to show that one antibody molecule was able to bind two soluble extracellular EGFR molecules in solution, and isomerization of one or both Asp-92 residues deactivated one or both antigen-binding regions, respectively. In addition, isomerization of Asp-92 showed a decrease in in vitro potency as measured by a cell proliferation assay with a 32D cell line that expressed the full-length human EGFR. The data indicate that antibodies containing either one or two isomerized residues were not effective in inhibiting EGFR-mediated cell proliferation, and that two unmodified antigen binding regions were needed to achieve full efficacy. For comparison, the potency of an intact IgG1 antibody cetuximab against the same receptor was correlated with the bioactivity of its individual antigen-binding fragments. The intact IgG1 antibody with two antigen-binding fragments was also much more active in suppressing cell proliferation than the individual fragments, similar to the IgG2 results. These results indicated that avidity played a key role in the inhibition of cell proliferation by these antibodies against the human EGFR, suggesting that their mechanisms of action are similar.  相似文献   

13.
Homochirality is essential for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, d-amino acids, which are enantiomers of L-amino acids, were recently detected in various living organisms in the form of free D-amino acids and D-amino acid residues in peptides and proteins. In particular, D-aspartyl (Asp) residues have been detected in various proteins from diverse tissues of elderly individuals. Here, we describe three important aspects of our research: (i) a method for detecting D-β-Asp at specific sites in particular proteins, (ii) a likely spontaneous mechanism by which Asp residues in proteins invert and isomerize to the D-β-form with age under physiological conditions, (iii) a discussion of factors that favor such a reaction.  相似文献   

14.
The formation of isoaspartate (isoAsp) from asparaginyl or aspartyl residues is a spontaneous post-translational modification of peptides and proteins. Due to isopeptide bond formation, the structure and possibly function of peptides and proteins is altered. IsoAsp modifications within the peptide chain have been reported for many cytosolic proteins. Amyloid peptides (Aβ) deposited in Alzheimer’s disease may carry an N-terminal isoAsp-modification. Here, we describe a quantitative investigation of isoAsp-formation from N-terminal Asn and Asp using model peptides similar to the Aβ N-terminus. The study is based on a newly developed separation of peptides using capillary electrophoresis (CE). 1H NMR was employed to validate the basic finding of N-terminal isoAsp-formation from Asp and Asn. Thereby, the isomerization of Asn at neutral pH (0.6 day?1, peptide NGEF) is approximately six times faster than that within the peptide chain (AANGEF). The difference in velocity between Asn and Asp isomerization is approximately 50-fold. In contrast to N-terminal Asn, Asp isomerization is significantly accelerated at acidic pH. The kinetic solvent isotope (k D2O/k H2O) effect of 2.46 suggests a rate-limiting proton transfer in isoAsp-formation. The proton inventory is consistent with transfer of one proton in the transition state, supporting the previous notion of rate-limiting deprotonation of the peptide backbone amide during succinimide-intermediate formation. The study provides evidence for a spontaneous N-terminal isoAsp-formation within peptides and might explain the accumulation of N-terminal isoAsp in amyloid deposits.  相似文献   

15.
The isomerization rate of aspartic acid (Asp) residue is known to be affected by the three-dimensional structures of peptides and proteins. Although the isomerized Asp residues were experimentally observed, structural features which affect the isomerization cannot be elucidated sufficiently because of protein denaturation and aggregation. In this study, molecular dynamics (MD) simulations were conducted on three αA-crystallin peptides (T6, T10, and T18), each containing a single Asp residue with different isomerization rate (T18 > T6 > T10) to clarify the structural factors of Asp isomerization tendency. For MD trajectories, distances between side-chain carboxyl carbon of Asp and main-chain amide nitrogen of (n + 1) residue (Cγ–N distances), root mean square fluctuations (RMSFs), and polar surface areas for main-chain amide nitrogen of (n + 1) residues (PSAN) were calculated, because these structural features are considered to relate to the formations of cyclic imide intermediates. RMSFs and PSAN are indexes of peptide backbone flexibilities and solvent exposure of the amide nitrogen, respectively. The average Cγ–N distances of T10 was longer than those of the other two peptides. In addition, the peptide containing Asp residue with a higher isomerization rate showed higher flexibility of the peptide backbone around the Asp residue. PSAN for amide nitrogen in T18 were much larger than those of other two peptides. The computational results suggest that Asp-residue isomerization rates are affected by these factors.  相似文献   

16.
A thermally stressed Fab molecule showed a significant increase of basic variants in imaged capillary isoelectric focusing (iCIEF) analysis. Mass analyses of the reduced protein found an increase in −18 Da species from both light chain and heavy chain. A tryptic peptide map identified two isoAsp-containing peptides, both containing Asp–Asp motifs and located in complementarity-determining regions (CDRs) of light chains and heavy chains, respectively. The approaches of hydrolyzing succinimide in H218O followed by tryptic digestion were used to label and identify the sites of isomerization. This method enabled identification of the isomerization site by comparing the MS/MS spectra of isomerized peptides with and without 18O incorporation. The light chain peptide L2 VTITCITSTDID12DDMNWYQQKPGK underwent simultaneous isomerization and recemization at residue Asp-12 after thermal stress as evidenced by the coinjection of synthetic peptide L2 with l-Asp-12, l-isoAsp-12, d-Asp-12, and d-isoAsp-12, respectively. A thermal stress study of the synthetic peptide (l-)L2 showed that the isomerization and racemization did not occur, indicating that the Asp degradation in this Asp–Asp motif is more related to the protein conformation than the primary sequence. Another isomerization site was identified as Asp-24 in the heavy chain peptide H5 QAPGQGLEWMGWINTYTGETTYAD24DFK. No other isomerizations were detected in CDR peptides containing either Asp–Ser or Asp–Thr motifs.  相似文献   

17.
18.
α-Crystallin, comprising 40–50 subunits of αA- and αB-subunits, is a long-lived major soluble chaperone protein in lens. During aging, α-crystallin forms aggregates of high molecular weight (HMW) protein and eventually becomes water-insoluble (WI). Isomerization of Asp in α-crystallin has been proposed as a trigger of protein aggregation, ultimately leading to cataract formation. Here, we have investigated the relationship between protein aggregation and Asp isomerization of αA-crystallin by a series of analyses of the soluble α-crystallin, HMW and WI fractions from human lens samples of different ages (10–76 years). Analytical ultracentrifugation showed that the HMW fraction had a peak sedimentation coefficient of 40 S and a wide distribution of values (10–450 S) for lens of all ages, whereas the α-crystallin had a much smaller peak sedimentation coefficient (10–20 S) and was less heterogeneous, regardless of lens age. Measurement of the ratio of isomers (Lα-, Lβ-, Dα-, Dβ-) at Asp58, Asp91/92 and Asp151 in αA-crystallin by liquid chromatography–mass spectrometry showed that the proportion of isomers at all three sites increased in order of aggregation level (α-crystallin < HMW < WI fractions). Among the abnormal isomers of Asp58 and Asp151, Dβ-isomers were predominant with a very few exceptions. Notably, the chaperone activity of HMW protein was minimal for lens of all ages, whereas that of α-crystallin decreased with increasing lens age. Thus, abnormal aggregation caused by Asp isomerization might contribute to the loss of chaperone activity of α-crystallin in aged human lens.  相似文献   

19.
Aggregation of the 42-mer amyloid β peptide (Aβ42) plays a pivotal role in the pathogenesis of Alzheimer’s disease. Recent investigations suggested the isomerization and/or racemization of Asp at position 1, 7, or 23 to be associated with the pathological role of Aβ42. Our previous study indicated that the turn at positions 22 and 23 of Aβ42 is closely related to its neurotoxicity through the formation of radicals. To clarify the contribution of these modifications at Asp23 to the pathology, three isomerized and/or racemized Aβ42 mutants were prepared. l-isoAsp23- and d-Asp23-Aβ42 showed moderate aggregative ability similar to the wild type. However, d-Asp23-Aβ42 was less neurotoxic than the wild type, while l-isoAsp23-Aβ42 was as toxic as the wild type. In contrast, d-isoAsp23-Aβ42 showed weak aggregative ability without neurotoxicity. These results suggest the isomerization and/or racemization of Asp23 not to be related to the pathogenesis, but to be a consequence of chemical reactions during the long-term deposition of fibrils.  相似文献   

20.
A series of cyclic peptides with different linkers were designed and synthesized to model the elbow-type Ca2+-binding loop of alpha-lactalbumin (LA). All amino acids of the Ca2+-binding loop are strikingly well conserved among LAs of different species with the sequence Lys79-Phe-Leu-Asp82-Asp-Asp-Leu-Thr- Asp87-Asp88, where three carboxylates of Asp82, Asp87, and Asp88 and the amide carbonyl oxygen atoms of Lys79 and Asp84 participate in Ca2+ binding. Alanine-containing models were also prepared for monitoring the role of the binding (82, 87-88) and nonbinding Asp residues (83-84) in coordinating the cation. The structural features of synthetic peptides and their Ca2+-binding properties were investigated in solution by circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. In water, the CD curves show a strong negative band below 200 nm as a sign of the presence of unfolded conformers. In TFE, all cyclic peptides were found to have a CD spectrum, reflecting the presence of folded (turn) conformers. The effect of Ca2+ was dependent on the structure and concentration of the model and the Ca2+ to peptide ratio (r(cat)). A surprising time dependence of the FTIR spectra of Ca2+ complexes of the Ala-containing peptides was observed. The shape of the broad amide I band showed no more change after approximately 60 min. Contrary to this, the deprotonation of the side chain COOH group(s) and formation of the final coordination sphere of Ca2+ took more time. Infrared spectra showed that in the Ca2+ complex of model comprising the binding Asp residues of LA, the cation is coordinated to the COO- groups of all three Asps, while in the complex of model comprising nonbinding Asp residues of LA, the two neighboring Asp side chains form a bridged Ca2+-binding system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号