首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharide (LPS) is associated with adverse developmental outcomes including embryonic resorption, fetal death, congenital teratogenesis and fetal growth retardation. Here, we explored the effects of maternal LPS exposure during pregnancy on testicular development, steroidogenesis and spermatogenesis in male offspring. The pregnant mice were intraperitoneally injected with LPS (50 µg/kg) daily from gestational day (GD) 13 to GD 17. At fetal period, a significant decrease in body weight and abnormal Leydig cell aggregations were observed in males whose mothers were exposed to LPS during pregnancy. At postnatal day (PND) 26, anogenital distance (AGD), a sensitive index of altered androgen action, was markedly reduced in male pups whose mothers were exposed to LPS daily from GD13 to GD 17. At PND35, the weight of testes, prostates and seminal vesicles, and serum testosterone (T) level were significantly decreased in LPS-treated male pups. At adulthood, the number of sperm was significantly decreased in male offspring whose mothers were exposed to LPS on GD 13–17. Maternal LPS exposure during gestation obviously diminished the percent of seminiferous tubules in stages I–VI, increased the percent of seminiferous tubules in stages IX–XII, and caused massive sloughing of germ cells in seminiferous tubules in mouse testes. Moreover, maternal LPS exposure significantly reduced serum T level in male mice whose mothers were exposed to LPS challenge during pregnancy. Taken together, these results suggest that maternal LPS exposure during pregnancy disrupts T production. The decreased T synthesis might be associated with LPS-induced impairments for spermatogenesis in male offspring.  相似文献   

2.
Sabaghi  A.  Heirani  A.  Kiani  A.  Yosofvand  N.  Sabaghi  S. 《Neurophysiology》2019,51(6):430-437
Neurophysiology - Clinical evidence indicates that physical activity during pregnancy may modulate the brain development and improve the neurobehavioral functions of the offspring. Nevertheless,...  相似文献   

3.
Diesel exhaust particles are a major component of ambient particulate matter, and concern about the health effects of exposure to ambient particulate matter is growing. Previously, we found that in utero exposure to diesel exhaust affected locomotor activity and motor coordination, but there are also indications that such exposure may contribute to increased aggression in offspring. Therefore, the aim of the present study was to test the effects of prenatal diesel exhaust exposure on social isolation-induced territorial aggression. Pregnant mice were exposed to low concentrations of diesel exhaust (DE; mass concentration of 90 μg/m3: DE group: n = 15) or clean air (control group: n = 15) for 8 h/day during gestation. Basal locomotion of male offspring was measured at 10 weeks of age. Thereafter, male offspring were individually housed for 2 weeks and subsequently assessed for aggression using the resident−intruder test at 12 weeks of age, and blood and brain tissue were collected from the male offspring on the following day for measuring serum testosterone levels and neurochemical analysis. There were no significant differences in locomotion between control and DE-exposed mice. However, DE-exposed mice showed significantly greater social isolation-induced territorial aggressive behavior than control mice. Additionally, socially-isolated DE-exposed mice expressed significantly higher concentrations of serum testosterone levels than control mice. Neurochemical analysis revealed that dopamine levels in the prefrontal cortex and nucleus accumbens were higher in socially isolated DE-exposed mice. Serotonin levels in the nucleus accumbens, amygdala, and hypothalamus were also lower in the socially isolated DE-exposed mice than in control mice. Thus, even at low doses, prenatal exposure to DE increased aggression and serum testosterone levels, and caused neurochemical changes in male socially isolated mice. These results may have serious implications for pregnant women living in regions with high levels of traffic-related air pollution.  相似文献   

4.
Maternal undernutrition results in elevated blood pressure (BP) and endothelial dysfunction in adult offspring. However, few studies have investigated interventions during early life to ameliorate the programming of hypertension and vascular disorders. We have utilised a model of maternal undernutrition to examine the effects of pre-weaning growth hormone (GH) treatment on BP and vascular function in adulthood. Female Sprague-Dawley rats were fed either a standard control diet (CON) or 50% of CON intake throughout pregnancy (UN). From neonatal day 3 until weaning (day 21), CON and UN pups received either saline (CON-S, UN-S) or GH (2.5 ug/g/day)(CON-GH, UN-GH). All dams were fed ad libitum throughout lactation. Male offspring were fed a standard diet until the end of the study. Systolic blood pressure (SBP) was measured at day 150 by tail cuff plethysmography. At day 160, intact mesenteric vessels mounted on a pressure myograph. Responses to pressure, agonist-induced constriction and endothelium-dependent vasodilators were investigated to determine vascular function. SBP was increased in UN-S groups and normalised in UN-GH groups (CON-S 121±2 mmHg, CON-GH 115±3, UN-S 146±3, UN-GH 127±2). Pressure mediated dilation was reduced in UN-S offspring and normalised in UN-GH groups. Vessels from UN-S offspring demonstrated a reduced constrictor response to phenylephrine and reduced vasodilator response to acetylcholine (ACh). Furthermore, UN-S offspring vessels displayed a reduced vasodilator response in the presence of L-NG-Nitroarginine Methyl Ester (L-NAME), carbenoxolone (CBX), L-NAME and CBX, Tram-34 and Apamin. UN-GH vessels showed little difference in responses when compared to CON and significantly increased vasodilator responses when compared to UN-S offspring. Pre-weaning GH treatment reverses the negative effects of maternal UN on SBP and vasomotor function in adult offspring. These data suggest that developmental cardiovascular programming is potentially reversible by early life GH treatment and that GH can reverse the vascular adaptations resulting from maternal undernutrition.  相似文献   

5.
Adolescence is marked by major physiological changes, including those in the sleep-wake cycle, such as phase delay, which may result in reduced sleep hours. Sleep restriction and/or deprivation in adult rats activate stress response and seem to be a risk factor for triggering emotional disorders. In the present study, we sought to evaluate the behavioral and neurobiological consequences of prolonged REM sleep restriction in juvenile male rats. Immediately after weaning, on postnatal day 21, three males from each litter were submitted to REM sleep deprivation and the other three animals were maintained in their home-cages. REM sleep restriction (REMSR) was accomplished by placing the animals in the modified multiple platform method for 18 h and 6 h in the home-cage, where they could sleep freely; the sleep restriction lasted 21 consecutive days, during which all animals were measured and weighed every 3 days. After the end of this period, all animals were allowed to sleep freely for 2 days, and then the behavioral tests were performed for evaluation of depressive and anxiety-like profiles (sucrose negative contrast test and elevated plus maze, EPM). Blood sampling was performed 5 min before and 30 and 60 min after the EPM for determination of corticosterone plasma levels. The adrenals were weighed and brains collected and dissected for monoamine levels and receptor protein expression. REMSR impaired the physical development of adolescents, persisting for a further week. Animals submitted to REMSR exhibited higher basal corticosterone levels and a greater anxiety index in the EPM, characteristic of an anxious profile. These animals also exhibited higher noradrenaline levels in the amygdala and ventral hippocampus, without any change in the expression of β1-adrenergic receptors, as well as higher serotonin and reduced turnover in the dorsal hippocampus, with diminished expression of 5-HT1A. Finally, greater concentration of BDNF was observed in the dorsal hippocampus in chronically sleep-restricted animals. Chronic REMSR during puberty impaired physical development and induced anxiety-like behavior, attributed to increased noradrenaline and serotonin levels in the amygdala and hippocampus.  相似文献   

6.
Low-birth-weight (LBW) children are born with several risk factors for disease, morbidity and neonatal mortality, even if carried to term. Placental insufficiency leading to hypoxemia and reduced nutritional supply is the main cause for LBW. Brain damage and poor neurological outcome can be the consequence. LBW after being carried to term gives better chances for survival, but these children are still at risk for poor health and the development of cognitive impairments. Preventive therapies are not yet available. We studied the risk/efficacy of chronic prenatal treatment with the anti-oxidative drug allopurinol, as putative preventive treatment in piglets. LBW piglets served as a natural model for LBW. A cognitive holeboard test was applied to study the learning and memory abilities of these allopurinol treated piglets after weaning. Preliminary analysis of the plasma concentrations in sows and their piglets suggested that a daily dose of 15 mg.kg−1 resulted in effective plasma concentration of allopurinol in piglets. No adverse effects of chronic allopurinol treatment were found on farrowing, birth weight, open field behavior, learning abilities, relative brain, hippocampus and spleen weights. LBW piglets showed increased anxiety levels in an open field test, but cognitive performance was not affected by allopurinol treatment. LBW animals treated with allopurinol showed the largest postnatal compensatory body weight gain. In contrast to a previous study, no differences in learning abilities were found between LBW and normal-birth-weight piglets. This discrepancy might be attributable to experimental differences. Our results indicate that chronic prenatal allopurinol treatment during the third trimester of pregnancy is safe, as no adverse side effects were observed. Compensatory weight gain of treated piglets is a positive indication for the chronic prenatal use of allopurinol in these animals. Further studies are needed to assess the possible preventive effects of allopurinol on brain functions in LBW piglets.  相似文献   

7.
It is increasingly recognized that intra-uterine growth restriction (IUGR) is associated with an increased risk of metabolic disorders in late life. Previous studies showed that mice exposed to LPS in late gestation induced fetal IUGR. The present study investigated the effects of maternal LPS exposure during pregnancy on metabolic phenotypes in female adult offspring. Pregnant mice were intraperitoneally injected with LPS (50 µg/kg) daily from gestational day (GD)15 to GD17. After lactation, female pups were fed with standard-chow diets (SD) or high-fat diets (HFD). Glucose tolerance test (GTT) and insulin tolerance test (ITT) were assessed 8 and 12 weeks after diet intervention. Hepatic triglyceride content was examined 12 weeks after diet intervention. As expected, maternal LPS exposure during pregnancy resulted in fetal IUGR. Although there was an increasing trend on fat mass in female offspring whose dams were exposed to LPS during pregnancy, maternal LPS exposure during pregnancy did not elevate the levels of fasting blood glucose and serum insulin and hepatic triglyceride content in female adult offspring. Moreover, maternal LPS exposure during pregnancy did not alter insulin sensitivity in adipose tissue and liver in female adult offspring. Further analysis showed that maternal LPS exposure during pregnancy did not exacerbate HFD-induced glucose tolerance and insulin resistance in female adult offspring. In addition, maternal LPS exposure during pregnancy did not aggravate HFD-induced elevation of hepatic triglyceride content in female adult offspring. In conclusion, LPS-induced IUGR does not alter metabolic phenotypes in adulthood.  相似文献   

8.

Objectives

To examine the effects of sleep restriction on firefighters’ physical task performance during simulated wildfire suppression.

Methods

Thirty-five firefighters were matched and randomly allocated to either a control condition (8-hour sleep opportunity, n = 18) or a sleep restricted condition (4-hour sleep opportunity, n = 17). Performance on physical work tasks was evaluated across three days. In addition, heart rate, core temperature, and worker activity were measured continuously. Rate of perceived and exertion and effort sensation were evaluated during the physical work periods.

Results

There were no differences between the sleep-restricted and control groups in firefighters’ task performance, heart rate, core temperature, or perceptual responses during self-paced simulated firefighting work tasks. However, the sleep-restricted group were less active during periods of non-physical work compared to the control group.

Conclusions

Under self-paced work conditions, 4 h of sleep restriction did not adversely affect firefighters’ performance on physical work tasks. However, the sleep-restricted group were less physically active throughout the simulation. This may indicate that sleep-restricted participants adapted their behaviour to conserve effort during rest periods, to subsequently ensure they were able to maintain performance during the firefighter work tasks. This work contributes new knowledge to inform fire agencies of firefighters’ operational capabilities when their sleep is restricted during multi-day wildfire events. The work also highlights the need for further research to explore how sleep restriction affects physical performance during tasks of varying duration, intensity, and complexity.  相似文献   

9.
妊娠期抑郁症可以通过影响孕妇的生理和心理变化,进而影响新生儿的正常生长发育,右美托咪定(dexmedetomidine,Dex)可以有效缓解抑郁情绪,降低产后抑郁症的发生。为探讨Dex对慢性应激抑郁妊娠大鼠子代发育及空间学习记忆能力的影响,将60只妊娠大鼠随机分为对照组、模型组、低剂量右美托咪定组和高剂量右美托咪定组,统计各组大鼠孕育率、平均产仔率和平均仔鼠成活率,并记录子代大鼠出生后体质量变化及学习记忆能力;检测子鼠脑组织乙酰胆碱(acetylcholine,Ach)、5-HT含量、TChE活力及海马组织CREB、p-CREB及BDNF的表达。结果显示,Dex可以以剂量依赖的方式提高慢性应激抑郁妊娠大鼠子代的平均成活率,调节脑组织Ach、5-HT、CREB、p-CREB和BDNF的水平,改善子鼠的学习记忆能力。结果表明,Dex可能通过调控神经递质和促进CREB信号传导,改善慢性应激抑郁妊娠大鼠的子代鼠学习记忆能力。研究探究了 Dex对妊娠期抑郁症大鼠子代生长发育和空间学习记忆能力的影响,以期指导临床治疗。  相似文献   

10.
目的:探讨MMP-1,MMP-13在慢性睡眠限制引起大鼠髁突软骨结构变化中的表达变化及作用。方法:180只雄性Wistar大鼠随机分为3组(n=60):慢性睡眠限制组(CSR)、大平台组(LC)、笼养组(CON)。每组根据试验时间不同分别分为3个亚组(n=20):7天(7D)、14天(14D)、21天(21D)组。参考改良多平台法(MMPM)建立大鼠的慢性睡眠限制模型。通过HE染色观察大鼠髁突软骨的结构变化。通过免疫组化和实时定量PCR分别检测MMP-1和MMP-13的蛋白水平及m RNA水平的表达变化。结果:HE染色和扫描电镜结果显示,CSR组的大鼠髁突软骨出现了病理性的改变。与CON和LC组比较,CSR组MMP-1和MMP-13的m RNA转录和蛋白表达水平明显升高(P0.05)。结论:慢性睡眠限制能够引起大鼠颞下颌关节髁突软骨的病理性变化。MMP-1和MMP-13的表达水平的变化可能在大鼠髁突软骨病理性改变中起关键作用。  相似文献   

11.
Previous forced desynchrony studies have highlighted the close relationship between the circadian rhythms of core body temperature (CBT) and sleep propensity. In particular, these studies have shown that a “forbidden zone” for sleep exists on the rising limb of the CBT rhythm. In these previous studies, the length of the experimental day was either ultrashort (90?min), short (20?h), or long (28?h), and the ratio of sleep to wake was normal (i.e., 1:2). The aim of the current study was to examine the relative effects of the circadian and homeostatic processes on sleep propensity using a 28-h forced desynchrony protocol in which the ratio of sleep to wake was substantially lower than normal (i.e., 1:5). Twenty-seven healthy males lived in a time-isolation sleep laboratory for 11 consecutive days. Participants completed either a control (n?=?13) or sleep restriction (n?=?14) condition. In both conditions, the protocol consisted of 2?×?24-h baseline days followed by 8?×?28-h forced desynchrony days. On forced desynchrony days, the control group had 9.3?h in bed and 18.7?h of wake, and the sleep restriction group had 4.7?h in bed and 23.3?h of wake. For all participants, each 30-s epoch of time in bed was scored as sleep or wake based on standard polysomnography recordings, and was also assigned a circadian phase (360°?=?24?h) based on a cosine equation fitted to continuously recorded CBT data. For each circadian phase (i.e., 72?×?5° bins), sleep propensity was calculated as the percentage of epochs spent in bed scored as sleep. For the control group, there was a clear circadian rhythm in sleep propensity, with a peak of 98.5% at 5° (~05:20?h), a trough of 64.9% at 245° (~21:20?h), and an average of 82.3%. In contrast, sleep propensity for the sleep restriction group was relatively high at all circadian phases, with an average of 96.7%. For this group, the highest sleep propensity (99.0%) occurred at 60° (~09:00?h), and the lowest sleep propensity (91.3%) occurred at 265° (~22:40?h). As has been shown previously, these current data indicate that with a normal sleep-to-wake ratio, the effect of the circadian process on sleep propensity is pronounced, such that a forbidden zone for sleep exists at a phase equivalent to evening time for a normally entrained individual. However, these current data also indicate that when the ratio of sleep to wake is substantially lower than normal, this circadian effect is masked. In particular, sleep propensity is very high at all circadian phases, including those that coincide with the forbidden zone for sleep. This finding suggests that if the homeostatic pressure for sleep is sufficiently high, then the circadian drive for wakefulness can be overridden. In future studies, it will be important to determine whether or not this masking effect occurs with less severe sleep restriction, e.g., with a sleep-to-wake ratio of 1:3. (Author correspondence: )  相似文献   

12.

Objectives

To examine the associations of Intimate partner violence (IPV) with stress-related sleep disturbance (measured using the Ford Insomnia Response to Stress Test [FIRST]) and poor sleep quality (measured using the Pittsburgh Sleep Quality Index [PSQI]) during early pregnancy.

Methods

This cross-sectional study included 634 pregnant Peruvian women. In-person interviews were conducted in early pregnancy to collect information regarding IPV history, and sleep traits. Adjusted odds ratios (aOR) and 95% confidence intervals (95%CIs) were calculated using logistic regression procedures.

Results

Lifetime IPV was associated with a 1.54-fold increased odds of stress-related sleep disturbance (95% CI: 1.08–2.17) and a 1.93-fold increased odds of poor sleep quality (95% CI: 1.33–2.81). Compared with women experiencing no IPV during lifetime, the aOR (95% CI) for stress-related sleep disturbance associated with each type of IPV were: physical abuse only 1.24 (95% CI: 0.84–1.83), sexual abuse only 3.44 (95%CI: 1.07–11.05), and physical and sexual abuse 2.51 (95% CI: 1.27–4.96). The corresponding aORs (95% CI) for poor sleep quality were: 1.72 (95% CI: 1.13–2.61), 2.82 (95% CI: 0.99–8.03), and 2.50 (95% CI: 1.30–4.81), respectively. Women reporting any IPV in the year prior to pregnancy had increased odds of stress-related sleep disturbance (aOR = 2.07; 95% CI: 1.17–3.67) and poor sleep quality (aOR = 2.27; 95% CI: 1.30–3.97) during pregnancy.

Conclusion

Lifetime and prevalent IPV exposures are associated with stress-related sleep disturbance and poor sleep quality during pregnancy. Our findings suggest that sleep disturbances may be important mechanisms that underlie the lasting adverse effects of IPV on maternal and perinatal health.  相似文献   

13.

Background

Sleep restriction, leading to deprivation of sleep, is common in modern 24-h societies and is associated with the development of health problems including cardiovascular diseases. Our objective was to investigate the immunological effects of prolonged sleep restriction and subsequent recovery sleep, by simulating a working week and following recovery weekend in a laboratory environment.

Methods and Findings

After 2 baseline nights of 8 hours time in bed (TIB), 13 healthy young men had only 4 hours TIB per night for 5 nights, followed by 2 recovery nights with 8 hours TIB. 6 control subjects had 8 hours TIB per night throughout the experiment. Heart rate, blood pressure, salivary cortisol and serum C-reactive protein (CRP) were measured after the baseline (BL), sleep restriction (SR) and recovery (REC) period. Peripheral blood mononuclear cells (PBMC) were collected at these time points, counted and stimulated with PHA. Cell proliferation was analyzed by thymidine incorporation and cytokine production by ELISA and RT-PCR. CRP was increased after SR (145% of BL; p<0.05), and continued to increase after REC (231% of BL; p<0.05). Heart rate was increased after REC (108% of BL; p<0.05). The amount of circulating NK-cells decreased (65% of BL; p<0.005) and the amount of B-cells increased (121% of BL; p<0.005) after SR, but these cell numbers recovered almost completely during REC. Proliferation of stimulated PBMC increased after SR (233% of BL; p<0.05), accompanied by increased production of IL-1β (137% of BL; p<0.05), IL-6 (163% of BL; p<0.05) and IL-17 (138% of BL; p<0.05) at mRNA level. After REC, IL-17 was still increased at the protein level (119% of BL; p<0.05).

Conclusions

5 nights of sleep restriction increased lymphocyte activation and the production of proinflammatory cytokines including IL-1β IL-6 and IL-17; they remained elevated after 2 nights of recovery sleep, accompanied by increased heart rate and serum CRP, 2 important risk factors for cardiovascular diseases. Therefore, long-term sleep restriction may lead to persistent changes in the immune system and the increased production of IL-17 together with CRP may increase the risk of developing cardiovascular diseases.  相似文献   

14.
Little is known about the occurrence of individual variation in sexual behavior and how maternal nutrition can affect this variation. We tested the hypothesis that male offspring of female meadow voles, Microtus pennsylvanicus, that were 30% food restricted (FR) during days 1–7 of lactation (FR 1–7), days 8–14 of lactation (FR 8–14), or late days 15–21 of lactation (FR 15–21) lactation show persistent, negative effects on their sexual behavior as adults relative to male offspring of females that were not food restricted. We measured three components of sexual behavior, attractivity, proceptivity, and receptivity, beginning when the males were 98 d of age. Food restriction during middle lactation (FR 8–14) but not during early (FR 1–7) and late lactation (FR 15–21) was sufficient to induce adult male voles to produce anogenital marks that were not as attractive as those produced by control males. Food restriction during lactation did not affect the proceptive behavior of male voles but did affect their receptivity. Only four of 12 FR 8–14 male voles mated compared to nine of 12 FR 1–7 males, eight of 12 FR 15–21 males, and eight of 11 control males. However, no differences existed in their copulatory behavior among the males that did mate. The body weight of FR 1–7 and FR 8–14 males was lower than that of FR 15–21 and control males when they were between 22 d of age (weaning) and 48 d of age (puberty) but was similar when the males were 98 d of age. Food intake was similar for the FR and control males between day 22 and day 98. It remains unclear, however, whether this type of maternal effect represents strategic programing of offspring behavior in response to the environment experienced by mothers or is a product of developmental processes of food restriction prior to weaning (Evolution 58 , 2004, 2574).  相似文献   

15.
Pregnancy is characterized by maternal systemic and intrarenal vasodilation, leading to increases in the renal plasma flow (RPF) and glomerular filtration rate (GFR). These responses are mainly mediated by nitric oxide (NO) and relaxin. The impact of cigarette smoking on the maternal adaptations to pregnancy is unclear. Here we evaluated the effects of chronic exposure to nicotine on systemic and intrarenal parameters in virgin (V) and 14-day pregnant (P) Wistar rats. V and P groups received saline or nicotine (6 mg·kg-1·day-1) respectively, via osmotic minipumps for 28 days, starting 14 days before pregnancy induction. Nicotine induced a 10% increase in blood pressure in the V group and minimized the characteristic pregnancy-induced hypotension. Renal sympathetic nerve activity (rSNA) and baroreflex sensitivity were impaired by nicotine mainly in the P group, indicating that the effect of nicotine on blood pressure was not mediated by nervous system stimulation. Nicotine had no effect on GFR in the V rats but reduced GFR of the P group by 30%. Renal expression of sodium and water transporters was downregulated by nicotine, resulting in increased fractional sodium excretion mainly in the P group, suggesting that nicotine compromised the sodium and water retention required for normal gestation. There was a reduction in the expression of inducible NO synthase (iNOS) in both the kidney tissue and renal artery, as well as in the expression of the relaxin receptor (LGR7). These results clearly show that nicotine induced deleterious effects in both virgin and pregnant animals, and abolished the maternal capacity to adapt to pregnancy.  相似文献   

16.
Effects of nonylphenol on immune system of male rats were examined. Dams were treated orally with nonylphenol at doses of 0, 20, 40, 80, or 200 mg/kg, respectively, from pregnant days 14 to 19. The offspring rats were investigated at postnatal day 60. Compared with the control groups, the doses of 80 and 200 mg nonylphenol/kg induced an obvious decrease in the absolute and relative weight of spleen and thymus. In the 200 mg/kg nonylphenol-treated group, the proliferative responses of murine spleen lymphocytes cultured in vitro were suppressed, Cytokine productions of interferon-gamma and interleukin-6 in serum were markedly lower than those in the control group. Histologically, the boundary between splenic red pulp and white pulp was unclear, expansion and congestion appeared in splenic sinus, lymphocytes in spleen and thymus dramatically reduced, and lots of focal necrosis cells were present. The results of this study show that nonylphenol can cross the placenta barrier, and that in utero exposure to 200 mg/kg/day nonylphenol can inhibit immune function in male offspring rats.  相似文献   

17.
18.
While having the highest vitamin C (VitC) concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg) or Low (100 mg) VitC per kg diet. Newborn pups (n = 157) were randomized into a total of four postnatal feeding regimens: High/High (Control); High/Low (Depleted), Low/Low (Deficient); and Low/High (Repleted). Proliferation and migration of newborn cells in the dentate gyrus was assessed by BrdU labeling and hippocampal volumes were determined by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P<0.001) which was not reversed by postnatal repletion. There was no difference in postnatal cellular proliferation and survival rates in the hippocampus between dietary groups, however, migration of newborn cells into the granular layer of the hippocampus dentate gyrus was significantly reduced in prenatally deficient animals (P<0.01). We conclude that a prenatal VitC deficiency in guinea pigs leads to persistent impairment of postnatal hippocampal development which is not alleviated by postnatal repletion. Our findings place attention on a yet unrecognized consequence of marginal VitC deficiency during pregnancy.  相似文献   

19.

Background & Aims

Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation.

Methods

Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45–55 days) and adult (110–130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin.

Results

Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p = 0.0291) and adult (p = 0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p = 0.049), daily bolus (p<0.0001) and synchronizer hours (p = 0.0002). All factors were significantly interacting (p = 0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase.

Conclusions

Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines.  相似文献   

20.
Maternal smoking during pregnancy (SDP) seems associated with reduced birthweight in the offspring. This observation, however, is based on conventional epidemiological analyses, and it might be confounded by unobserved maternal characteristics related to both smoking habits and offspring birth weight. Therefore, we apply a quasi-experimental sibling analysis to revisit previous findings. Using the Swedish Medical Birth Register, we identified 677,922 singletons born between 2002 and 2010 from native Swedish mothers. From this population, we isolated 62,941 siblings from 28,768 mothers with discrepant habits of SDP. We applied conventional and mother-specific multilevel linear regression models to investigate the association between maternal SDP and offspring birthweight. Depending on the mother was light or heavy smoker and the timing of exposition during pregnancy (i.e., first or third trimester), the effect of smoking on birthweight reduction was between 6 and 78 g less marked in the sibling analysis than in the conventional analysis. Sibling analysis showed that continuous smoking reduces birthweight by 162 grams for mothers who were light smokers (1 to 9 cigarettes per day) and 226 g on average for those who were heavy smokers throughout the pregnancy in comparison to non-smoker mothers. Quitting smoking during pregnancy partly counteracted the smoking-related birthweight reduction by 1 to 29 g, and a subsequent smoking relapse during pregnancy reduced birthweight by 77 to 83 g. The sibling analysis provides strong evidence that maternal SDP reduces offspring birthweight, though this reduction was not as great as that observed in the conventional analysis. Our findings support public health interventions aimed to prevent SDP and to persuade those who already smoke to quit and not relapse throughout the pregnancy. Besides, further analyses are needed in order to explain the mechanisms through which smoking reduces birthweight and to identify other maternal characteristics that are common causes of both birthweight reduction and maternal smoking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号