首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Lymphocyte chromosome preparations from 200 mentally retarded children and 200 normal adult controls were analyzed by G-, Q-, and C-banding techniques for minor chromosome variations (G and Q) and selected heteromorphisms (G and C). Minor variations scored included inv(9), prominent or decreased short arms and/or satellite on acrocentric chromosomes, and 17ph. C heteromorphisms analyzed included those involving 1qh, 9qh, and 16qh regions. Length variations of Yq were scored on G-banded karyotypes. No significant differences in frequencies of scored minor variations or heteromorphisms were noted between the retarded and control populations.  相似文献   

2.
Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.  相似文献   

3.
The chromosomes of one male and three female gorillas were extensively studied with various regional banding methods. The chromosomes were stained with the fluorescent dyes quinacrine mustard and distamycin A/DAPI (DA/DAPI), which label different subsets of heterochromatin in the chromosome complement. Furthermore, lymphocyte cultures were treated with the cytidine analog 5-azacytidine (5-azaC). The 5-azaC-induced undercondensations were found in most of the DA/DAPI-bands as well as in many telomeric C-bands. The karyotype of the gorilla exhibits a considerable number of heterochromatin variants. Of the different types of heteromorphisms noted, the most striking is that involving the short arm regions of chromosomes 12 to 16 and 23 (satellite stalk regions) and the paracentromeric heterochromatin of chromosomes 17 and 18. There also are numerous heteromorphic C-bands localized in the telomeric regions of homologous chromosome arms. In comparison, only few heteromorphisms occur between C-bands in the centromeric and pericentromeric regions of homologs. Finally, a variability in the fluorescence intensity of quinacrine-bright satellites in the short arms of chromosomes 12 to 16, 22, and 23 is observed.  相似文献   

4.
The present study is to determine the effects of centromeric heterochromatin on centromere separation. Amniotic cell cultures in which the centromeric heterochromatin of one chromosome was at least twice as large (qh+) as the heterochromatin (qh) in the homologous chromosome were selected. Fifteen amniotic cell samples with 1qh+, 9qh+ or 16qh+ were studied. The size of the centromeric heterochromatin was directly correlated with the delay in centromere separation. The chromosome with the smaller centromeric heterochromatin tended to show earlier centromere separation than the homologue with the larger heterochromatin. Our results suggest that the quantity of centromeric heterochromatin may influence the genetic control of centromere separation.  相似文献   

5.
Summary The cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes with high specificity to individual chromosomes (chromosomes 3, 11, 17, 18, and X) were in situ hybridized to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms of hybridization intensity with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences provided the evidence for a high resolution power of the in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes has a variable amount of alphasatellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as a new general approach to analysis of chromosome heteromorphisms in man.  相似文献   

6.
Cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes of high specificity to individual chromosomes (chromosomes 3, 11, 17, 18 and X) were hybridized in situ to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in definite heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The significant interindividual differences in relative copy number of alpha-satellite DNA have been detected. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms, as shown by intensity of hybridization with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences gives evidence for a high resolution power of in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes is variable for amount of alpha-satellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as novel general approach to analysis of chromosome heteromorphisms in man.  相似文献   

7.
The immunodeficiency, centromeric region instability, facial anomalies (ICF) syndrome is a rare autosomal recessive disease. Usually, it is caused by mutations in the DNA methyltransferase 3B gene, which result in decreased methylation of satellite DNA in the juxtacentromeric heterochromatin at 1qh, 16qh, and 9qh. Satellite II-rich 1qh and 16qh display high frequencies of abnormalities in mitogen-stimulated ICF lymphocytes without these cells being prone to aneuploidy. Here we show that in lymphoblastoid cell lines from four ICF patients, there was increased colocalization of the hypomethylated 1qh and 16qh sequences in interphase, abnormal looping of pericentromeric DNA sequences at metaphase, formation of bridges at anaphase, chromosome 1 and 16 fragmentation at the telophase–interphase transition, and, in apoptotic cells, micronuclei with overrepresentation of chromosome 1 and 16 material. Another source of anaphase bridging in the ICF cells was random telomeric associations between chromosomes. Our results elucidate the mechanism of formation of ICF chromosome anomalies and suggest that 1qh–16qh associations in interphase can lead to disturbances of mitotic segregation, resulting in micronucleus formation and sometimes apoptosis. This can help explain why specific types of 1qh and 16qh rearrangements are not present at high frequencies in ICF lymphoid cells despite diverse 1qh and 16qh aberrations continuously being generated.  相似文献   

8.
Centromeres and telomeres of higher eukaryotes generally contain repetitive sequences, which often form pericentric or subtelomeric heterochromatin blocks. C-banding analysis of chromosomes of Azara''s owl monkey, a primate species, showed that the short arms of acrocentric chromosomes consist mostly or solely of constitutive heterochromatin. The purpose of the present study was to determine which category, pericentric, or subtelomeric is most appropriate for this heterochromatin, and to infer its formation processes. We cloned and sequenced its DNA component, finding it to be a tandem repeat sequence comprising 187-bp repeat units, which we named OwlRep. Subsequent hybridization analyses revealed that OwlRep resides in the pericentric regions of a small number of metacentric chromosomes, in addition to the short arms of acrocentric chromosomes. Further, in the pericentric regions of the acrocentric chromosomes, OwlRep was observed on the short-arm side only. This distribution pattern of OwlRep among chromosomes can be simply and sufficiently explained by assuming (i) OwlRep was transferred from chromosome to chromosome by the interaction of pericentric heterochromatin, and (ii) it was amplified there as subtelomeric heterochromatin. OwlRep carries several direct and inverted repeats within its repeat units. This complex structure may lead to a higher frequency of chromosome scission and may thus be a factor in the unique distribution pattern among chromosomes. Neither OwlRep nor similar sequences were found in the genomes of the other New World monkey species we examined, suggesting that OwlRep underwent rapid amplification after the divergence of the owl monkey lineage from lineages of the other species.  相似文献   

9.
The karyotype of the Mediterranean species Anemone hortensis L. (Ranunculaceae) was characterized with emphasis on heterochromatin distribution and localization of ribosomal (18S−5.8S−26S and 5S rDNA) and telomeric repeats (TTTAGGG). Diploid chromosome complement, 2 n  = 2 x  = 16, common to all investigated populations, consisted of three acrocentric, one meta-submetacentric and four metacentric chromosomes ranging in size from 6.34 to 10.47 µm. Fluorescence in situ hybridization (FISH) with 18S and 5S rDNA probes revealed two 18S−5.8S−26S rDNA loci on a satellite and secondary constriction of acrocentric chromosome pair 2 and terminally on acrocentric chromosome pair 3, and two 5S rDNA loci in the pericentromeric region of meta-submetacentric chromosome pair 4 and in the proximity of the 18S−5.8S−26S rDNA locus on chromosome pair 2. The only GC-rich heterochromatin, as revealed by fluorochrome Chromomycin A3 staining, was that associated with nucleolar organizer regions, whereas AT-rich heterochromatin, stained with 4,6-diamino-2-phenylindole (DAPI), was distributed intercalarly and terminally on the long arm of all three acrocentric chromosomes, and terminally on chromosomes 4 and 5. FISH with Arabidopsis -type telomeric repeats (TTTAGGG) as a probe revealed two classes of signals, small dot-like and large bands, at chromosome termini exclusively, where they corresponded to terminal DAPI-stained heterochromatin. Heteromorphism of chromosome pair 4, which refers to terminal DAPI bands and FISH signals, was observed in populations of Anemone hortensis . Chromosome pairing during meiosis was regular with formation of localized chiasmata proximal to the centromere.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 177–186.  相似文献   

10.
Sequential staining for G- and C-banding of acrocentric chromosomes of 8 persons showed that the large heterochromatin region occurred more frequently in chromosome 15 than in chromosomes 13 and 14, and in chromosome 22 more frequently than in chromosome 21. There proved to be no correlation between the size of the heterochromatic region and the short arm of the acrocentric chromosomes. The frequency of occurrence of the satellites in the 8 persons was approximately the same for all the acricentric pairs. The C-banded satellite region of the homologous chromosomes is often heteromorphic.  相似文献   

11.
A quantitative analysis of C bands by densitometric measurements in chromosomes 1, 9, 16, and Y was conducted in Caucasians and Japanese living in Brazil. Sixty normal unrelated subjects (30 males and 30 females) were studied in each racial group. Caucasians presented C bands of chromosomes 1, 9, and 16 larger than Japanese, but, on average, only the difference for C bands of chromosome 9 was statistically significant. In the Japanese, the C band sizes of chromosomes Y were, on average, significantly larger than in the Caucasians. The mean C band size of chromosome 9 and the sum of the three pairs were significantly larger in Caucasian than in Japanese males. The total values of constitutive heterochromatin, sigma (1qh,9qh,16qh,Yq12), did not show significant difference between Caucasian and Japanese males. The relative C band sizes of chromosomes 1, 9, and 16 were, on average, similar in Caucasians and Japanese. No sex difference was found in both racial groups. As regards the heteromorphism, only the values of C bands of chromosome 9 were, on average, significantly larger in Caucasians than in Japanese. Partial inversions were detected only among the Caucasians.  相似文献   

12.
Previous studies of reversed acrocentric compound-X chromosomes suggested peculiar influences of heterochromatin on both the synthesis and meiotic behavior of such compunds. It seemed, with respect to synthesis, that the long arm of the Y chromosome on an X.Y(L) chromosome was necessary in order for the heterochromatic exchange giving rise to reversed acrocentrics to occur, even though Y(L) itself did not participate in the compound-generating event. With respect to behavior, the resulting compounds appeared, presumably as a consequence of their singular generation, to contain an interstitial heterochromatic region that caused the distribution of exchanges between the elements of the compound to be abnormal (many zero and two-exchange tetrads with few, if any, single-exchange tetrads). Removing the intersititial heterochromatin (or, curiously, appending Y(L) as a second arm of the compound) eliminated the recombinational anomalies and resulted in typical tetrad distributions.--We provide evidence that these peculiarities, while presumably real, were likely the consequence of a special X.Y(L) chromosome that was used to synthesize the reversed acrocentrics examined in the early studies and are not general properties of either reversed acrocentric compounds or of interstitial heterochromatin. However, we show that specific heterochromatic regions do, in fact, profoundly influence the behavior of (apparently all) reversed acrocentric compound-X chromosomes. In particular, we demonstrate that specific portions of the Y chromosome and of the basal X-chromosome heterochromatin, when present as homologs for reversed acrocentric compounds, markedly and coordinately increase both the frequency of exchange between the elements of the compound and the fertility (egg production) of compound-bearing females. It is, we suppose, some aspect of this heterochromatic effect, produced by the special X.Y(L) chromosome, that caused the earlier-analyzed compounds to exhibit the observed anomalies.  相似文献   

13.
Summary Chromosome variants were evaluated on the basis of their DNA-replication pattern (LBA). The size of late-replicating centromeric heterochromatin of chromosomes 2, 5, 6, 7, 8, 10, 11, 12, 17, 18, 19, and 20, i.e., pairs without Q or C (qh) variants, was measured by means of a microdensitometer. The results were expressed in area, related to that of a euchromatic segment of a given chromosome, and were assigned into five classes based on the difference in standard deviation from an average relative size. LBA variants in each of 12 pairs were found in 29%–42% of the chromosomes.  相似文献   

14.
Mitomycin C induced chromosome rearrangements were analysed in cultured human leukocytes by reverse banding technique. Breaks and chromosomal exchanges involved preferentialy the entromeric region of some chromosomes (1, 5, 9, 16, and 20). Associations between acrocentric chromosomes was not found to be increased. But acrocentric associations with centromeric regions were frequently present. The differences between the mechanism of exchanges and breaks are discussed. The part of heterochromatin in post replication DNA repair is considered.  相似文献   

15.
The chromosomes from 57 persons were analyzed by means of quinacrine fluorescent staining in order to assess the amount of variation and the discriminatory power of Q-band heteromorphism analysis. Chromosomes 3, 4, 13, 14, 15, 21, 22, and Y of each person were visually compared to those of 56 others, for a total of 1,596 comparisons. No two persons were found to have the same set of variants. The number of differences between chromosomes for each comparison ranged from 2 to 12 out of a possible total of 14 for females and 15 for males. Relatives were also distinguishable, and differences ranged from two to seven. We used the frequency with which each chromosome was useful for telling two people apart, and estimated the probability of finding two persons with the same set of quinacrine variants as .0003. Distinctly different heteromorphisms were found in the 39 unrelated persons for each of the chromosomes examined. In this small population, the number of different sets of variants observed for chromosomes 3, 4, 13, 14, 15, 21, 22, and Y were six, seven, 27, 16, 20, 15, 24, and five, respectively, for a total number of possible combinations of 1.14 X 10(15). As a test of the usefulness of chromosome heteromorphisms in paternity cases, 12 father-mother-child trios of virtually certain paternity, owing to the father-child segregation of a rare structural rearrangement, were coded and recombined at random to produce 120 cases of uncertain paternity. When the code was broken, 108 "alleged fathers" had been excluded correctly and the 12 biological fathers had been included correctly.  相似文献   

16.
本文对我国云南南部的白须长臂猿(H.leucogenys)染色体的G带、C带、晚复制带及Ag-NORs进行了较为详细的研究。它的2n=52,核型公式为44(M或SM)+6(A),XY(M,A)。C带表明一些染色体着丝点C带弱化;有的染色体出现插入的和端位的C带;X染色体两臂有端位C带,Y染色体是C带阳性和晚复制的。Ag-NORs的数目,雌体有4个,雄体有5个,Y染色体上具NOR。本文对白颊长臂猿与其它长臂猿间的亲缘关系、核型进化的可能途径进行了讨论。  相似文献   

17.
The heteromorphisms of C-band regions of human chromosomes are evaluated by means of restriction endonucleases AluI, DdeI, MboI, and RsaI. Every chromosome exhibits heteromorphic markers of the C-band regions except chromosome 8. Each enzyme was found to be highly characteristic in its staining profile, a result that clearly suggests the diversity of heterochromatin. The inherent C-band-region heterochromatin variability that is revealed by these enzymes provides a valuable tool in identifying markers as compared with other previously described techniques.  相似文献   

18.
Q banding of chromosome preparations from lake trout revealed the presence of heteromorphic quinacrine bright bands on several chromosomes. All of the metacentric chromosome pairs can be distinguished on the basis of number, position and intensity of the quinacrine bright bands and chromosome size. These bands appear to represent heterochromatin, since they are darkly staining with the C band technique. Since all of the fish examined had consistent heteromorphisms at several of the quinacrine bright bands, these chromosome markers should be useful in genetic comparisons between different trout stocks and populations.  相似文献   

19.
Nesokia indica, the Indian mole rat, exhibits extensive variability (polymorphism) for the constitutive heterochromatin of the X and Y chromosomes. These polymorphic X and Y types range from a large metacentric chromosome to a small acrocentric one and occur in different frequencies in the population. On the assumption that there is random mating among individuals carrying these various X and Y chromosomes, the population shows Hardy-Weinberg proportions for the genotypes. However, notwithstanding the partial or total loss of constitutive heterochromatin of the X and Y chromosomes in a few individuals, its retention in most of the animals seems obligatory to the population at large. Hence, we suggest that the C-heterochromatin plays a "regulatory" role in the population dynamics of this species.  相似文献   

20.
Peripheral blood lymphocyte metaphase chromosomes of three Bovoidean species have been studied using Quinacrine fluorescence and Giemsa banding techniques to give Q-, G-, and C-banding patterns. Q- and G-banding characteristics, coupled with chromosome length, enabled all of the chromosomes in each of the chromosome complements to be clearly distinguished, although some difficulties were encountered with the very smallest chromosomes. A comparison of G-banding patterns between the species revealed a remarkable degree of homology of banding patterns. Each of the 23 different acrocentric autosomes of the domestic sheep (2n=54) was represented by an identical chromosome in the goat (2n=60) and the arms of the 3 pairs of sheep metacentric autosomes were identical matches with the remaining 6 goat acrocentrics. A similar interspecies homology was evident for all but two of the autosomes in the ox (2n=60). This homology between sheep metacentric and goat acrocentric elements confirms a previously suggested Robertsonian variation. The close homology in G-banding patterns between these related species indicates that the banding patterns are evolutionarily conservative and may be a useful guide in assessing interspecific relationships. —The centromeric heterochromatin in the autosomes of the three species was found to show little or no Q-or G-staining, in contrast to the sex chromosomes. This lack of centromeric staining with the G-technique (ASG) contrasts markedly with results obtained with other mammalian species. However, with the C-banding technique these regions show a normal intense Giemsa stain and the C-bands in the sex chromosomes are inconspicuous. The amount of centromeric heterochromatin in the sheep metacentric chromosomes is considerable less than in the acrocentric autosomes or in a newly derived metacentric element discovered in a goat. It is suggested that the pale G-staining of the centromeric heterochromatin in these species might be related to the presence of G-Crich satellite DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号