首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
自2019年12月2019冠状病毒病暴发流行以来,严重急性呼吸综合征冠状病毒 2 型已经产生了1万个以上的变异株。其中有些可能获得更强的传染性,有的致病性得以提高,有的或许不能被现有的检测试剂检测出来,还有的也许能够逃逸疫苗的免疫保护作用。世界卫生组织于2021年5月31日发布了针对这些变异株的新的命名系统。本文对当前世界上流行较广的4个变异株进行综述,包括最近在广州市引起小暴发的δ变异株。  相似文献   

2.
世界卫生组织(World Health Organization, WHO)于2021年11月26日将首次在南非报告的新型冠状病毒 B.1.1.529 变异株列为受关注变种(variant of concern, VOC),并将其命名为奥密克戎(Omicron)。该变异株存在约50个突变,仅在刺突蛋白区域就有至少30个突变,远远超过其他流行株的突变位点数量。根据对突变位点的分析以及初步实验证实,该毒株可能具有极强的传染性以及免疫逃逸能力。Omicron变异株会怎样影响新冠疫情的走向引起了各国的广泛关注,本文将从Omicron变异株的基本特征、检测、致病性、传染性、免疫逃逸等方面进行综述。  相似文献   

3.
It is well known that black and green tea extracts, particularly polyphenols, have antimicrobial activity against various pathogenic microbes including viruses. However, there is limited data on the antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged rapidly in China in late 2019 and which has been responsible for coronavirus disease 2019 (COVID-19) pandemic globally. In this study, 20 compounds and three extracts were obtained from black and green tea and found that three tea extracts showed significant antiviral activity against SARS-CoV-2, whereby the viral titre decreased about 5 logs TCID50 per ml by 1·375 mg ml−1 black tea extract and two-fold diluted tea bag infusion obtained from black tea when incubated at 25°C for 10 s. However, when concentrations of black and green tea extracts were equally adjusted to 344 µg ml−1, green tea extracts showed more antiviral activity against SARS-CoV-2. This simple and highly respected beverage may be a cheap and widely acceptable means to reduce SARS-CoV-2 viral burden in the mouth and upper gastrointestinal and respiratory tracts in developed as well as developing countries.  相似文献   

4.
Smoking is one of the risk factors most closely related to the severity of coronavirus disease 2019 (COVID-19). However, the relationship between smoking history and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is unknown. In this study, we evaluated the ACE2 expression level in the lungs of current smokers, ex-smokers, and nonsmokers. The ACE2 expression level of ex-smokers who smoked cigarettes until recently (cessation period shorter than 6 months) was higher than that of nonsmokers and ex-smokers with a long history of nonsmoking (cessation period longer than 6 months). We also showed that the efficiency of SARS-CoV-2 infection was enhanced in a manner dependent on the angiotensin-converting enzyme 2 (ACE2) expression level. Using RNA-seq analysis on the lungs of smokers, we identified that the expression of inflammatory signaling genes was correlated with ACE2 expression. Notably, with increasing duration of smoking cessation among ex-smokers, not only ACE2 expression level but also the expression levels of inflammatory signaling genes decreased. These results indicated that smoking enhances the expression levels of ACE2 and inflammatory signaling genes. Our data suggest that the efficiency of SARS-CoV-2 infection is enhanced by smoking-mediated upregulation of ACE2 expression level.  相似文献   

5.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected persons could be symptomatic or asymptomatic. Asymptomatic and symptomatic patients can transmit SARS-CoV-2. This study aimed to study the humoral immune response in Saudis who are Covid-19 symptomatic and asymptomatic patients. We created three types of enzyme-linked immunosorbant assays (ELISAs) to reveal IgG and IgM antibodies (Abs) against SARS-CoV-2. The developed ELISAs were designed to detect Abs against SARS-CoV-2 N, S and N + S proteins. A number of Covid-19 symptomatic (1 5 3) and asymptomatic (84) RT–PCR-confirmed patient sera were used to evaluate the ELISAs and to determine the IgG and IgM antibody profile in those patients. The sensitivity and specificity of these ELISAs were evaluated using pre-Covid-19 pandemic serum samples. The results revealed the existence of anti-SARS-CoV-2 IgG and IgM Abs in Covid-19 symptomatic and asymptomatic Saudi persons. The use of SARS-CoV-2 N and S proteins in the same ELISA greatly increased the detectability of infection. In conclusion, the Covid-19 symptomatic and asymptomatic Saudi persons demonstrated both IgG and IgM antibody profile with higher titer in symptomatic patients. The use of N + S proteins as antibody capture antigens greatly increased the ELISA sensitivity.  相似文献   

6.
利用生物信息学软件分析不同地区来源的SARS -CoV全基因组序列的变异特征、碱基易变性及地区进化特点 ,结果表明 :SARS -CoV全基因组序列中 ,存在 4 77个变异位点 ,变异率为 0 .4 74‰。SARS -CoV碱基变异存在时间和地区特征。腺嘌呤和胸腺嘧啶相对于胞嘧啶和鸟嘌呤来说 ,更易发生变异。SARS -CoV全基因组序列的 5’端相对保守 ,而 3’端变异较活跃。动物来源的毒株与人源毒株具有极其密切联系。  相似文献   

7.
In this study, we aimed to evaluate the diagnostic value of serological assay for SARS-CoV-2. A newly-developed ELISA assay for IgM and IgG antibodies against N protein of SARS-CoV-2 was used to screen the serums of 238 admitted hospital patients between February 6 and February 14, 2020 with confirmed or suspected SARS-CoV-2. SARS-CoV-2 RNA was detected on pharyngeal swab specimens using real time RT-PCR. 194 (81.5%) of the serums were detected to be antibody (IgM and/or IgG) positive, significantly higher than the positive rate of viral RNA (64.3%). There was no difference in the positive rate of antibodies between the confirmed patients (83.0%, 127/153) and the suspected patients (78.8%, 67/85), whose nucleic acid tests were negative. The antibody positive rates were very low in the first five days after initial onset of symptoms, and then rapidly increased as the disease progressed. After 10 days, the antibody positive rates jumped from below 50% to over 80%. However, the positive rates of viral RNA maintained above 60% in the first 11 days after initial onset of symptoms, and then rapidly decreased. Overall, the suspected patients were most likely infected by SARS-CoV-2. Before the 11th day after initial onset of symptoms, nucleic acid test is key for confirmation of viral infection. The combination of serological assay can greatly improve the diagnostic efficacy. After the 11th day post-disease onset, the diagnosis for viral infection should be majorly dependent on serological assay.  相似文献   

8.
The coronavirus disease 19 (COVID-19) outbreak caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) had turned out to be highly pathogenic and transmittable. Researchers throughout the globe are still struggling to understand this strain's aggressiveness in search of putative therapies for its control. Crosstalk between oxidative stress and systemic inflammation seems to support the progression of the infection. Glycogen synthase kinase-3 (Gsk-3) is a conserved serine/threonine kinase that mainly participates in cell proliferation, development, stress, and inflammation in humans. Nucleocapsid protein of SARS-CoV-2 is an important structural protein responsible for viral replication and interferes with the host defence mechanism by the help of Gsk-3 protein. The viral infected cells show activated Gsk-3 protein that degrades the Nuclear factor erythroid 2-related factor (Nrf2) protein, resulting in excessive oxidative stress. Activated Gsk-3 also modulates CREB-DNA activity, phosphorylates NF-​κB, and degrades β-catenin, thus provokes systemic inflammation. Interaction between these two pathophysiological events, oxidative stress, and inflammation enhance mucous secretion, coagulation cascade, and hypoxia, which ultimately leads to multiple organs failure, resulting in the death of the infected patient. The present review aims to highlight the pathogenic role of Gsk-3 in viral replication, initiation of oxidative stress, and inflammation during SARS-CoV-2 infection. The review also summarizes the potential Gsk-3 pathway modulators as putative therapeutic interventions in combating the COVID-19 pandemic.  相似文献   

9.
Severe acute respiratory syndrome (SARS) is a deadly form of pneumonia caused by a novel coronavirus, a viral family responsible for mild respiratory tract infections in a wide variety of animals including humans, pigs, cows, mice, cats, and birds. Analyses to date have been unable to identify the precise origin of the SARS coronavirus. We used Bayesian, neighbor-joining, and split decomposition phylogenetic techniques on the SARS virus replicase, surface spike, matrix, and nucleocapsid proteins to reveal the evolutionary origin of this recently emerging infectious agent. The analyses support a mammalian-like origin for the replicase protein, an avian-like origin for the matrix and nucleocapsid proteins, and a mammalian-avian mosaic origin for the host-determining spike protein. A bootscan recombination analysis of the spike gene revealed high nucleotide identity between the SARS virus and a feline infectious peritonitis virus throughout the gene, except for a 200- base-pair region of high identity to an avian sequence. These data support the phylogenetic analyses and suggest a possible past recombination event between mammalian-like and avian-like parent viruses. This event occurred near a region that has been implicated to be the human receptor binding site and may have been directly responsible for the switch of host of the SARS coronavirus from animals to humans.  相似文献   

10.
The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. Coronaviruses and their closest relatives possess extremely large plus-strand RNA genomes and employ unique mechanisms and enzymes in RNA synthesis that separate them from all other RNA viruses. The SARS epidemic prompted a variety of studies on multiple aspects of the coronavirus replication cycle, yielding both rapid identification of the entry mechanisms of SARS-CoV into host cells and valuable structural and functional information on SARS-CoV proteins. These recent advances in coronavirus research have important implications for the development of anti-SARS drugs and vaccines.  相似文献   

11.
免疫系统是人体内的一把双刃剑,它一方面能清除侵染的各类病原体,但另一方面其异常调控又能在人体中引发各类免疫性疾病,甚至导致死亡。本文将简要讨论人体免疫系统与新的冠状病毒﹝即严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)〕感染的相互关系。一方面免疫系统能全方位地预防病毒感染,进化出一整套从分子到细胞、从短期到长期的病毒清除机制;另一方面,免疫系统又可能引发“细胞因子风暴”,给SARS-CoV-2的感染患者带来负面作用。本文还将讨论受到广泛关注的免疫相关的治疗策略,着重探讨抗体依赖的增强效应(antibody-dependent enhancement, ADE)可能给疫苗研发带来的困难与挑战。  相似文献   

12.
In view of devastating effects of COVID-19 on human life, there is an urgent need for the licened vaccines or therapeutics for the SARS-CoV-2 infection. Age-old passive immunization with protective antibodies to neutralize the virus is one of the strategies for emergency prophylaxis and therapy for coronavirus disease 2019 (COVID-19). In this review, the authors discuss up-to-date advances in immune-based therapy for COVID-19. The use of convalescent plasma therapy as the first line of defense to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been established, with encouraging results. Monoclonal antibodies (mAbs) that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein or block the interaction between SARS-CoV-2 RBD and the human angiotensin-converting enzyme 2 receptor have been found to be very promising as a countermeasure for tackling the SARS-CoV-2 infection, and clinical trials are underway. Considering the counterproductive antibody-dependent enhancement of the virus, mAbs therapy that is safe and efficacious, even in people with underlying conditions, will be a significant breakthrough. In addition, emerging immunotherapeutic interventions using nanobodies and cellular immunotherapy are promising avenues for tackling the COVID-19 pandemic. The authors also discuss the implication of mAbs as mediators of cytokine storm syndrome to modify the immune response of COVID-19 patients, thus reducing the fatality rate of COVID-19 infection.  相似文献   

13.
The 3' untranslated region (3' UTR) of the genome of the severe acute respiratory syndrome coronavirus can functionally replace its counterpart in the prototype group 2 coronavirus mouse hepatitis virus (MHV). By contrast, the 3' UTRs of representative group 1 or group 3 coronaviruses cannot operate as substitutes for the MHV 3' UTR.  相似文献   

14.
The coronavirus membrane protein (M) is the key player in the assembly of virions at intracellular membranes between endoplasmic-reticulum and Golgi-complex. Using a newly established human monoclonal anti-M antibody we detected glycosylated and nonglycosylated membrane-associated M in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infected cells and in purified virions. Further analyses revealed that M contained a single N-glycosylation site at asparagine 4. Recombinant M was transported to the plasma membrane and gained complex-type N-glycosylation. In SARS-CoV infected cells and in purified virions, however, N-glycosylation of M remained endoglycosidase H-sensitive suggesting that trimming of the N-linked sugar side chain is inhibited.  相似文献   

15.
疫苗的接种被认为是阻止时下2019冠状病毒病(Corona Virus Disease 2019,COVID-19)疫情进一步蔓延的最有效手段.目前,国内外多个研究团队采用了不同的技术路线开展严重急性呼吸综合征冠状病毒2(Severe Acute Respiratory Syndrome Coronavirus 2,S...  相似文献   

16.
17.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging respiratory virus responsible for the ongoing coronavirus disease 19 (COVID-19) pandemic. More than a year into this pandemic, the COVID-19 fatigue is still escalating and takes hold of the entire world population. Driven by the ongoing geographical expansion and upcoming mutations, the COVID-19 pandemic has taken a new shape in the form of emerging SARS-CoV-2 variants. These mutations in the viral spike (S) protein enhance the virulence of SARS-CoV-2 variants by improving viral infectivity, transmissibility and immune evasion abilities. Such variants have resulted in cluster outbreaks and fresh infection waves in various parts of the world with increased disease severity and poor clinical outcomes. Hence, the variants of SARS-CoV-2 pose a threat to human health and public safety. This review enlists the most recent updates regarding the presently characterized variants of SARS-CoV-2 recognized by the global regulatory health authorities (WHO, CDC). Based on the slender literature on SARS-CoV-2 variants, we collate information on the biological implications of these mutations on virus pathology. We also shed light on the efficacy of therapeutics and COVID-19 vaccines against the emerging SARS-CoV-2 variants.  相似文献   

18.
Li FQ  Xiao H  Tam JP  Liu DX 《FEBS letters》2005,579(11):2387-2396
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a highly basic nucleocapsid (N) protein of 422 amino acids. Similar to other coronavirus N proteins, SARS-CoV N protein is predicted to be phosphorylated and may contain nuclear localization signals, serine/arginine-rich motif, RNA binding domain and regions responsible for self-association and homo-oligomerization. In this study, we demonstrate that the protein is posttranslationally modified by covalent attachment to the small ubiquitin-like modifier. The major sumoylation site was mapped to the (62)lysine residue of the N protein. Further expression and characterization of wild type N protein and K62A mutant reveal that sumoylation of the N protein drastically promotes its homo-oligomerization, and plays certain roles in the N protein-mediated interference of host cell division. This is the first report showing that a coronavirus N protein undergoes posttranslational modification by sumoylation, and the functional implication of this modification in the formation of coronavirus ribouncleoprotein complex, virion assembly and virus-host interactions.  相似文献   

19.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2.  相似文献   

20.
本文评估了6个品牌的严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS­CoV­2)特异性抗体检测试剂盒的性能,以指导临床合理选用。收集2020年1月30日至2020年5月11日期间上海市(复旦大学附属)公共卫生临床中心的住院患者样本资料共245例,其中包括SARS­CoV­2感染确诊患者122例,排除SARS­CoV­2感染的其他疾病患者123例。选用6个品牌的抗体检测试剂盒(3种为胶体金法,3种为化学发光法)检测所有患者的血清样本,同步采用聚合酶链反应(polymerase chain reaction,PCR)检测SARS­CoV­2核酸,统计临床灵敏度、特异性、阴性预测值和阳性预测值等指标,比较各检测方法间的差异。 结果显示,各检测试剂盒在临床特异性方面表现相近,但临床灵敏度差异明显,IgG的灵敏度高于IgM。化学发光试剂灵敏度为72.1%~85.2%,整体优于胶体金试剂的47.5%~84.4%。所有试剂检测结果与SARS­CoV­2核酸诊断结果相比均有统计学差异(P<0.05)。SARS­CoV­2抗体的特异性检出率随时间而上升,核酸确诊患者≥16 d抗体检出率最高可达96%。 结果表明,SARS­CoV­2抗体检测可作为核酸诊断的辅助手段,IgG和IgM 联合诊断可提高检测的灵敏度。但是不同试剂盒性能表现有差异,应根据不同临床需求和应用场景选择合适的试剂盒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号