首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aflatoxins have been considered as one of the major risk factors of male infertility, and aflatoxin B1 (AFB1) is the most highly toxic and prevalent member of the aflatoxins family. Selenium (Se), an essential nutritional trace mineral for normal testicular development and male fertility, has received extensive intensive on protective effects of male reproductive system due to its potential antioxidant and activating testosterone synthesis. To investigate the protective effect of Se on AFB1-induced testicular toxicity, the mice were orally administered with AFB1 (0.75 mg/kg) and Se (0.2 mg/kg or 0.4 mg/kg) for 45 days. We found that that Se elevated testes index, sperm functional parameters (concentration, malformation, and motility), and the level of serum testosterone in AFB1-exposed mice. Moreover, our results showed that Se attenuated the AFB1-induced oxidative stress and the reduction of testicular testosterone synthesis enzyme protein expression such as steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), and 17β-hydroxysteroid dehydrogenase (17β-HSD) in AFB1-exposed mice. These results demonstrated that Se conferred protection against AFB1-induced testicular toxicity and can be attributed to its antioxidant and increased testosterone level by stimulating protein expression of StAR and testosterone synthetic enzymes.  相似文献   

2.
Free radical production and lipid peroxidation are potentially important mediators in testicular physiology and toxicology. Polychlorinated biphenyls (PCBs) are global environmental contaminants that cause disruption of the endocrine system in human and animals. The present study was conducted to elucidate the protective role of vitamin C and E against Aroclor 1254-induced changes in Leydig cell steroidogenesis and antioxidant system. Adult male rats were dosed for 30 days with daily intraperitoneal (ip) injection of 2 mg/kg Aroclor or vehicle (corn oil). One group of rats was treated with vitamin C (100 mg/kg bw/day) while the other group was treated with vitamin E (50 mg/kg bw/day) orally, simultaneously with Aroclor 1254 for 30 days. One day after the last treatment, animals were euthanized and blood was collected for the assay of serum hormones such as luteinizing hormone (LH), thyroid stimulating hormone (TSH), prolactin (PRL), triiodothyronine (T3), thyroxine (T4), testosterone and estradiol. Testes were quickly removed and Leydig cells were isolated in aseptic condition. Purity of Leydig cells was determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining method. Purified Leydig cells were used for quantification of cell surface LH receptors and steroidogenic enzymes such as cytochrome P450 side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β- HSD). Leydig cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamyl transpeptidase (γ-GT), glutathione-S-transferase (GST) and non-enzymatic antioxidants such as vitamin C and E were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also estimated in Leydig cells. Aroclor 1254 treatment significantly reduced the serum LH, TSH, PRL, T3, T4, testosterone and estradiol. In addition to this, Leydig cell surface LH receptors, activities of the steroidogenic enzymes such as cytochrome P450scc, 3β-HSD, 17β-HSD, antioxidant enzymes SOD, CAT, GPX, GR, γ-GT, GST and non-enzymatic antioxidants such as vitamin C and E were significantly diminished whereas, LPO and ROS were markedly elevated. However, the simultaneous administration of vitamin C and E in Aroclor 1254 exposed rats resulted a significant restoration of all the above-mentioned parameters to the control level. These observations suggest that vitamin C and E have ameliorative role against adverse effects of PCB on Leydig cell steroidogenesis.  相似文献   

3.
Calcium is essential for functioning of different systems including male reproduction. However, it has also been reported as chemo-castrative agent. The study has been undertaken to elucidate the effect of excessive dietary calcium on male reproductive system in animals with possible action. Adult male healthy rats fed CaCl(2) at different doses (0.5, 1.0 and 1.5 g%) in diet for 13 and 26 days to investigate reproductive parameters as well as the markers of oxidative stress. Significant alteration was found (P < 0.05) in testicular and accessory sex organs weight, epididymal sperm count, testicular steroidogenic enzyme (Δ(5) 3β-HSD and 17β-HSD) activities, serum testosterone, LH, FSH, LPO, activities of antioxidant enzymes, testicular histoarchitecture along with adrenal Δ(5) 3β-HSD activity with corticosterone level in dose- and time-dependent manner. Overall observations suggest that excessive dietary calcium enhances the generation of free-radicals resulting in structural and functional disruption of male reproduction.  相似文献   

4.
5.
Activities of key testicular androgenic enzymes [Δ(5), 3β-hydroxysteroid dehydrogenase (Δ(5), 3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD)], plasma levels of testosterone, and testicular gametogenic activities were studied in heat-exposed adult male toads during hibernating season for two consecutive years. Exposure of toads to an elevated environmental temperature for 14 and 21 days resulted in significant elevation of testicular Δ(5), 3β-HSD and 17β-HSD activities, along with plasma levels of testosterone. Testicular gametogenic activity, by means of quantity of all stages of spermatogenic cycle, were elevated significantly at the same experimental schedule, but 7 days of heat exposure resulted in significant elevation only in stage IV. The results indicated that environmental temperature is an important modulator of breeding activities of male toads. It also demonstrated that testicular activities in seasonally breeding toads are probably not linked to hibernating cycle.  相似文献   

6.
Exposure to toxic metals including cadmium has become an increasingly recognized source of illness worldwide. Cadmium (Cd(2+) ) is one of the environmental pollutants affecting various tissues and organs including testis. The protective effect of lipoic acid and selenium on Cd(2+) -induced testicular damage was investigated. Accordingly, male Wistar rats were allocated into four groups (n = 8; each). Gp I: (control), whereas the other 3 groups received CdCl(2) (2 mg/kg, i.p. for 28 days) alone or in combination with either (i) lipoic acid (35 mg/kg, p.o) or (ii) selenium (0.35 mg/kg, p.o) throughout the experiment. Serum testosterone, luteinizing hormone and follicle-stimulating hormone levels significantly decreased in the Cd(2+) -exposed rats. The activities of testicular key androgenic enzymes, 3β-hydroxysteroid dehydrogenase and 17 β-HSD significantly decreased in Cd(2) exposed rats compared to the control counterparts. In addition, the activities of testicular marker enzymes were significantly altered in cadmium-treated animals. Significant reductions in body and testicular weight as well as antioxidant status were also observed in Cd(2+) -exposed rats. Moreover, some testicular metal levels were altered. Lipoic acid and selenium significantly increased serum testosterone level and restored testicular activity of 3β-HSD and 17 β-HSD and were effective in modulation of most of the measured biochemical parameters. The biochemical parameters were further confirmed with histopathological findings. In conclusion, the present study demonstrated the beneficial influences of lipoic acid and selenium in reducing harmful effects of Cd(2+) in rats' testes.  相似文献   

7.
《Reproductive biology》2023,23(2):100749
The present study was planned to investigate the anti-spermatogenic and anti-steroidogenic effects of Clomiphene Citrate (CC) an anti-estrogen and Mifepristone (MT) an anti-progesterone in the testis of male rats. Following the oral administration of 1.0 mg and 5.0 mg/kg b.w/day of each for the duration of 30 and 60 days, quantitation of spermatogenesis, RIA for serum and intra-testicular testosterone levels, western blotting and RT-PCR for expression of StAR, 3β-HSD and P450arom enzymes in the testis was done. Clomiphene Citrate at 5.0 mg/kg b.w/day for 60 days significantly reduced testosterone (T) levels however the effect was not significant with the lower doses. Reproductive parameters in animals treated by Mifepristone remained mostly unaffected, however, a significant decline in testosterone levels and altered expression of selected genes was observed in 5.0 mg for the 30d treatment group. Clomiphene Citrate at higher doses affected the weights of the testis and secondary sex organs. Seminiferous tubules revealed hypo-spermatogenesis with a significant decrease in the number of maturing germ cells and a reduction in tubular diameter. Attenuation in serum testosterone was associated with the downregulation of expression in StAR, 3β-HSD, and P450arom mRNA and protein levels in the testis even after 30 d of CC administration. The results indicate that the anti-estrogen (Clomiphene Citrate) but not anti-progesterone (Mifepristone) induces hypo-spermatogenesis in rats which are associated with a downregulation of expression of two of the steroidogenic enzymes, 3β-HSD and P450arom mRNA and StAR protein.  相似文献   

8.
We examined the localization of steroidogenic cells in rainbow trout (Oncorhynchus mykiss) testis during spermatogenesis by using polyclonal antibodies generated against rainbow trout cholesterol side-chain cleavage enzyme cytochrome P450 (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), 17α-hydroxylase/C17,21 lyase (P450c17), and aromatase cytochrome P450 (P450arom) as markers of steroid production. Since we had previously produced specific antibodies against 3β-HSD and P450arom, antibodies against oligopeptides corresponding to C-terminal sequences of P450scc and P450c17, predicted from rainbow trout P450scc and P450c17 cDNAs, were produced in this study. These two antibodies recognized 54-kDa (P450scc) and 59-kDa (P450c17) bands specifically in several steroidogenic organs, i.e., testis, ovary, and interrenal tissue (head kidney) in Western blots. Immunohistochemically, immunoreactive P450scc, P450c17, and 3β-HSD, but not P450arom, were found only in interstitial Leydig cells of immature and mature testes. Immunoreactive P450arom was not detected in either testis. This study suggests that Sertoli cells and germ cells of rainbow trout testis do not contain P450scc, P450c17, P450arom, or 3β-HSD.  相似文献   

9.
邻苯二甲酸二(2-乙基己基)酯(di-2-ethylhexylphthalate,DEHP)及氯氰菊酯(cypermethrin,CYP)是我国广泛存在的两种环境内分泌干扰物(environmental endocrine disruptors,EEDs),具有显著的抗雄激素活性及生殖毒性,可致雄性性腺发育不良.祖国传统医学认为,性腺发育不良属肾精亏虚、肾气不足,临床采用益肾填精中药治疗取得显著疗效,但其具体机制尚不清楚.本实验主要研究益肾填精中药拮抗EEDs——DEHP及CYP引致青春前期大鼠性腺发育不良的作用机制.实验中染毒组分别饲喂500 mg/kg DEHP,80 mg/kg CYP及500 mg/kg DEHP+80 mg/kg CYP,治疗组采用40 mg/kg益肾填精中药与相应染毒物质同时饲喂.研究结果显示,DEHP、CYP单独及联合染毒组的青春前期大鼠睾丸重量、睾丸系数及血清睾酮水平均显著下调;睾丸氧化应激指标MDA含量、GSH-Px活性明显上升;病理组织及超微结构显示睾丸形态萎缩;睾丸支持细胞功能相关的基因与蛋白表达均出现不同程度的下调.益肾填精中药治疗干预后,睾丸重量、睾丸系数及血清睾酮水平均显著增加并接近对照组水平;睾丸形态明显改善,细胞数量增加;睾丸氧化应激水平下降;实时荧光定量PCR及Western印迹显示睾丸支持细胞功能相关的基因与蛋白的表达水平显著上调.本研究证实,益肾填精中药对DEHP及CYP的抗雄激素活性及生殖毒性有显著拮抗作用,可明显拮抗染毒物质诱导的氧化应激作用,促进睾酮分泌,并改善睾丸支持细胞功能,这可能是益肾填精中药有效拮抗EEDs抗雄激素活性及其生殖毒性的主要作用机制之一.  相似文献   

10.
We report the first use of exemestane (EM), a steroidal aromatase inhibitor (AI) commercially known as aromasin, in studies of sex differentiation in fish. The effectiveness of EM was examined in two different age groups of the gonochoristic fish, Nile tilapia (Oreochromis niloticus). Untreated control fish (all female) showed normal ovarian differentiation through 120 days after hatching (dah), whereas fish treated with EM at 1000 and 2000 µg/g of feed from 9 dah through 35 dah, the critical period for sex differentiation, exhibited complete testicular differentiation; all stages of spermatogenic germ cells were evident and well developed efferent ducts were present. Fish treated with EM at 1000 µg/g of feed from 70 dah through 100 dah significantly suppressed plasma estradiol-17β level and increased level of 11-ketotestosterone. Furthermore, untreated control fish showed strong gonadal expression of the steroidogenic enzymes P450 cholesterol-side chain-cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and cytochrome P450 aromatase (P450arom). In contrast, EM-treated fish showed immunopositive reactions against P450scc and 3β-HSD but not against P450arom in interstitial Leydig cells. These results indicate that treatment of tilapia juveniles with EM during sex differentiation leads to the development of testes, apparently by a complete suppression of aromatase activity.  相似文献   

11.
Bisphenol S (BPS) is an environmental endocrine disruptor widely used in industrial production. BPS induces oxidative stress and exhibits male reproductive toxicity in mice, but the mechanisms by which BPS impairs steroid hormone synthesis are not fully understood. Nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 signaling is a key pathway in improving cellular antioxidant defense capacities. Therefore, this study explored the effects of exposure to BPS on testosterone synthesis in adult male mice and its mechanisms with regard to the Nrf2/HO-1 signaling pathway. Adult male C57BL/6 mice were orally exposed to BPS (2, 20, and 200 mg/kg BW) with sesame oil as a vehicle (0.1 ml/10 g BW) per day for 28 consecutive days. The results showed that compared with the control group, serum testosterone levels were substantially reduced in the 20 and 200 mg/kg BPS treatment groups, and testicular testosterone levels were reduced in all BPS treatment groups. These changes were accompanied by a prominent decrease in the expression levels of testosterone synthesis-related enzymes (STAR, CYP11A1, CYP17A1, HSD3B1, and HSD17B3) in the mouse testis. In addition, BPS induced oxidative stress in the testis by upregulating the messenger RNA and protein levels of Keap1 and downregulating the levels of Nrf2, HO-1, and downstream antioxidant enzymes (CAT, SOD1, and Gpx4). In summary, our results indicate that exposure of adult male mice to BPS can inhibit Nrf2/HO-1 signaling and antioxidant enzyme activity, which induces oxidative stress and thereby may impair testosterone synthesis in testicular tissues, leading to reproductive damage.  相似文献   

12.
13.
Androgen production in the testis is carried out by the Leydig cells, which convert cholesterol into androgens. Previously, isoflavones have been shown to affect serum androgen levels and steroidogenic enzyme activities. In this study, the effects of lifelong exposure to dietary soy isoflavones on testicular microsomal steroidogenic enzyme activities were examined in the rat. F1 male rats were obtained from a multi-generational study where the parental generation was fed diets containing alcohol-washed soy protein supplemented with increasing amounts of Novasoy, a commercially available isoflavone supplement. A control group was maintained on a soy-free casein protein-based diet (AIN93G). The diets were designed to approximate human consumption levels and ranged from 0 to 1046.6 mg isoflavones/kg pelleted feed, encompassing exposures representative of North American and Asian diets as well as infant fed soy-based formula. Activities of testicular 3β-hydroxysteroid dehydrogenase (3β-HSD), P450c17 (CYP17), 17β-hydroxysteroid dehydrogenase (17β-HSD) were assayed on post natal day (PND) 28, 70, 120, 240 and 360 while 5-reducatase was assayed on PND 28. At PND 28, 3β-HSD activity was elevated by approximately 50% in rats receiving 1046.6 mg total isoflavones/kg feed compared to those on the casein only diet. A similar increase in activity was observed for CYP17 in rats receiving 235.6 mg total isoflavones/kg feed, a level representative of infant exposure through formula, compared to those receiving 0 mg isoflavones from the casein diet. These results demonstrate that rats fed a mixture of dietary soy isoflavones showed significantly altered enzyme activity profiles during development at PND 28 as a result of early exposure to isoflavones at levels obtainable by humans.  相似文献   

14.
Increased cholangiocyte growth is critical for the maintenance of biliary mass during liver injury by bile duct ligation (BDL). Circulating levels of testosterone decline following castration and during cholestasis. Cholangiocytes secrete sex hormones sustaining cholangiocyte growth by autocrine mechanisms. We tested the hypothesis that testosterone is an autocrine trophic factor stimulating biliary growth. The expression of androgen receptor (AR) was determined in liver sections, male cholangiocytes, and cholangiocyte cultures [normal rat intrahepatic cholangiocyte cultures (NRICC)]. Normal or BDL (immediately after surgery) rats were treated with testosterone or antitestosterone antibody or underwent surgical castration (followed by administration of testosterone) for 1 wk. We evaluated testosterone serum levels; intrahepatic bile duct mass (IBDM) in liver sections of female and male rats following the administration of testosterone; and secretin-stimulated cAMP levels and bile secretion. We evaluated the expression of 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3, the enzyme regulating testosterone synthesis) in cholangiocytes. We evaluated the effect of testosterone on the proliferation of NRICC in the absence/presence of flutamide (AR antagonist) and antitestosterone antibody and the expression of 17β-HSD3. Proliferation of NRICC was evaluated following stable knock down of 17β-HSD3. We found that cholangiocytes and NRICC expressed AR. Testosterone serum levels decreased in castrated rats (prevented by the administration of testosterone) and rats receiving antitestosterone antibody. Castration decreased IBDM and secretin-stimulated cAMP levels and ductal secretion of BDL rats. Testosterone increased 17β-HSD3 expression and proliferation in NRICC that was blocked by flutamide and antitestosterone antibody. Knock down of 17β-HSD3 blocks the proliferation of NRICC. Drug targeting of 17β-HSD3 may be important for managing cholangiopathies.  相似文献   

15.
Diabetes mellitus induces testicular damage, increases sperm abnormalities, and impairs reproductive dysfunction due to induction of endocrine disturbance and testicular oxidative stress. This study evaluated the reproductive protective effect of ellagic acid (EA) against testicular damage and abnormalities in sperm parameters in Streptozotocin (STZ)-induced diabetic rats (T1DM) and examined some possible mechanisms of protection. Adult male rats were segregated into 5 groups (n = 12 rat/each) as control, control + EA (50 mg/kg/day), T1DM, T1DM + EA, and T1DM + EA + brusatol (an Nrf-2 inhibitor) (2 mg/twice/week). All treatments were conducted for 12 weeks, daily. EA preserved the structure of the seminiferous tubules, prevented the reduction in sperm count, motility, and viability, reduced sperm abnormalities, and downregulated testicular levels of cleaved caspase-3 and Bax in diabetic rats. In the control and diabetic rats, EA significantly increased the circulatory levels of testosterone, reduced serum levels of FSH and LH, and upregulated Bcl-2 and all steroidogenic genes (StAr, 3β-HSD1, and 11β-HSD1). Besides, it reduced levels of ROS and MDA but increased levels of GSH and MnSOD and the transactivation of Nrf2. All these biochemical alterations induced by EA were associated with increased activity and nuclear accumulation of Nrf2. However, all these effects afforded by EA were weakened in the presence of brusatol. In conclusion, EA could be an effective therapy to alleviated DM-induced reproductive toxicity and dysfunction in rats by a potent antioxidant potential mediated by the upregulation of Nrf2.  相似文献   

16.
The process of sex change in the gobiid fish Trimma okinawae was investigated by gonad histology and immunohistochemistry of two steroidogenic enzymes, P450 cholesterol-side-chain-cleavage (P450scc) and 3-hydroxysteroid dehydrogenase (3-HSD). Irrespective of sexual phase, gonads comprised both ovarian and testicular tissues. Females changed sex to male within 7 days, reverting again to female over an 11-day period. In each sexual phase of the females, the 2nd (2DF-M) and 4th (4DF-M) day after the initiation of sex change to male, the males, and 2nd (2DM-F), 4th (4DM-F), and 6th (6DM-F) days after the initiation of reversion from male to female, histological observations were made. In the ovary during the female, 2DF-M, 4DF-M, and 6DM-F phases, both vitellogenic and previtellogenic oocytes were present, but only previtellogenic oocytes were found in the other phases. The testis contained sperm in all phases, but sperm ducts were not visible in the female phase. In the ovary, P450scc immunoreactivity of interstitial cells was strongly or moderately detected, although weak in the male phase. In contrast, P450scc immunoreactivity in thecal cells was found in all but the male and 2DM-F phases. 3-HSD immunoreactive interstitial cells were detected in all phases, but only weakly so in the male and 2DM-F phases. 3-HSD immunoreactive thecal cells were observed in all stages without the male and 2DM-F and 4DM-F phases. In the testis, moderate P450scc and 3-HSD immunoreactivity was regularly found in the Leydig cells in all the phases. These results suggest that functional steroids including testosterone are produced in any sexual phases.  相似文献   

17.
Exposure of rodents to phthalates is associated with developmental and reproductive anomalies, and there is concern that these compounds may be causing adverse effects on human reproductive health. Testosterone (T), secreted almost exclusively by Leydig cells in the testis, is the primary steroid hormone that maintains male fertility. Leydig cell T biosynthesis is regulated by the pituitary gonadotropin LH. Herein, experiments were conducted to investigate the ability of di(2-ethylhexyl)phthalate (DEHP) to affect Leydig cell androgen biosynthesis. Pregnant dams were gavaged with 100 mg(-1) kg(-1) day(-1) DEHP from Gestation Days 12 to 21. Serum T and LH levels were significantly reduced in male offspring, compared to control, at 21 and 35 days of age. However, these inhibitory effects were no longer apparent at 90 days. In a second set of experiments, prepubertal rats, from 21 or 35 days of age, were gavaged with 0, 1, 10, 100, or 200 mg(-1) kg(-1) day(-1) DEHP for 14 days. This exposure paradigm affected Leydig cell steroidogenesis. For example, exposure of rats to 200 mg(-1) kg(-1) day(-1) DEHP caused a 77% decrease in the activity of the steroidogenic enzyme 17beta-hydroxysteroid dehydrogenase, and reduced Leydig cell T production to 50% of control. Paradoxically, extending the period of DEHP exposure to 28 days (Postnatal Days 21-48) resulted in significant increases in Leydig cell T production capacity and in serum LH levels. The no-observed-effect-level and lowest-observed-effect-level were determined to be 1 mg(-1) kg(-1) day(-1) and 10 mg(-1) kg(-1) day(-1), respectively. In contrast to observations in prepubertal rats, exposure of young adult rats by gavage to 0, 1, 10, 100, or 200 mg(-1) kg(-1) day(-1) DEHP for 28 days (Postnatal Days 62-89) induced no detectable changes in androgen biosynthesis. In conclusion, data from this study show that DEHP effects on Leydig cell steroidogenesis are influenced by the stage of development at exposure and may occur through modulation of T-biosynthetic enzyme activity and serum LH levels.  相似文献   

18.
19.
Green tea, prepared from the steamed and dried leaves of the shrub Camellia sinensis, is known for its antioxidant and anti-carcinogenic effects. However, its effects on male gonadal functions have not been explored adequately and the present investigation has been undertaken to evaluate the effect of green tea extract on gonads of adult male albino rats. Results of in vivo studies showed that green tea extract (GTE) at mild (1.25 g%, identical to 5 cups of tea/day), moderate (2.5 g%, identical to 10 cups of tea/day) and high (5.0 g%, identical to 20 cups of tea/day) doses, for a period of 26 days, altered morphology and histology of testis and accessory sex organs. A significant dose-dependent decrease in the sperm counts, inhibited activities of testicular delta(5)3beta-and 17beta-hydroxysteroid dehydrogenase (delta5-3beta3-HSD and 17beta3-HSD respectively) and decreased serum testosterone level were noticed. Significant increase in serum LH level was observed after moderate and high doses; serum FSH level also increased but not significantly. Histopathological examination showed inhibition of spermatogenesis evidenced by preferential loss of matured and elongated spermatids. Results of this study showed that GTE at relatively high dose may cause impairment of both the morphological and normal functional status of testis in rodents and thus its consumption at relatively high doses raises concern on male reproductive function in spite of its other beneficial effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号