首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin beta subunits. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane. We tested the role of the talin-head-NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head-NPxY interaction is solely to regulate integrin adhesion.  相似文献   

2.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is essential to connect extracellular matrix-bound integrins to the cytoskeleton. Talin can connect to the cytoskeleton either directly, through its actin-binding motifs, or indirectly, by recruiting other actin-binding proteins. Talin's carboxy-terminal end contains a well-characterized actin-binding domain (ABD). We tested the role of the C-terminal ABD of talin in integrin function in Drosophila. We found that introduction of mutations that reduced actin binding in vitro into the isolated C-terminal Talin-ABD impaired actin binding in vivo. Moreover, when engineered into full-length talin, these mutations disrupted a subset of integrin-mediated adhesion-dependent developmental events. Specifically, morphogenetic processes that involve dynamic, short-term integrin-mediated adhesion were particularly sensitive to impaired function of the C-terminal Talin-ABD. We propose that during development talin connects integrins to the cytoskeleton in distinct ways in different types of integrin-mediated adhesion: directly in transient adhesions and indirectly in stable long-lasting adhesions. Our results provide insight into how a similar array of molecular components can contribute to diverse adhesive processes throughout development.  相似文献   

3.
Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

4.
During cell migration, the physical link between the extracellular substrate and the actin cytoskeleton mediated by receptors of the integrin family is constantly modified. We analyzed the mechanisms that regulate the clustering and incorporation of activated alphavbeta3 integrins into focal adhesions. Manganese (Mn2+) or mutational activation of integrins induced the formation of de novo F-actin-independent integrin clusters. These clusters recruited talin, but not other focal adhesion adapters, and overexpression of the integrin-binding head domain of talin increased clustering. Integrin clustering required immobilized ligand and was prevented by the sequestration of phosphoinositole-4,5-bisphosphate (PI(4,5)P2). Fluorescence recovery after photobleaching analysis of Mn(2+)-induced integrin clusters revealed increased integrin turnover compared with mature focal contacts, whereas stabilization of the open conformation of the integrin ectodomain by mutagenesis reduced integrin turnover in focal contacts. Thus, integrin clustering requires the formation of the ternary complex consisting of activated integrins, immobilized ligands, talin, and PI(4,5)P2. The dynamic remodeling of this ternary complex controls cell motility.  相似文献   

5.
The beta subunit cytoplasmic domains of integrin adhesion receptors are necessary for the connection of these receptors to the actin cytoskeleton. The cytoplasmic protein, talin, binds to beta integrin cytoplasmic tails and actin filaments, hence forming an integrin-cytoskeletal linkage. We used recombinant structural mimics of beta(1)A, beta(1)D and beta(3) integrin cytoplasmic tails to characterize integrin-binding sites within talin. Here we report that an integrin-binding site is localized within the N-terminal talin head domain. The binding of the talin head domain to integrin beta tails is specific in that it is abrogated by a single point mutation that disrupts integrin localization to talin-rich focal adhesions. Integrin-cytoskeletal interactions regulate integrin affinity for ligands (activation). Overexpression of a fragment of talin containing the head domain led to activation of integrin alpha(IIb)beta(3); activation was dependent on the presence of both the talin head domain and the integrin beta(3) cytoplasmic tail. The head domain of talin thus binds to integrins to form a link to the actin cytoskeleton and can thus regulate integrin function.  相似文献   

6.
Integrins are heterodimeric (αβ) cell surface receptors that are activated to a high affinity state by the formation of a complex involving the α/β integrin transmembrane helix dimer, the head domain of talin (a cytoplasmic protein that links integrins to actin), and the membrane. The talin head domain contains four sub-domains (F0, F1, F2 and F3) with a long cationic loop inserted in the F1 domain. Here, we model the binding and interactions of the complete talin head domain with a phospholipid bilayer, using multiscale molecular dynamics simulations. The role of the inserted F1 loop, which is missing from the crystal structure of the talin head, PDB:3IVF, is explored. The results show that the talin head domain binds to the membrane predominantly via cationic regions on the F2 and F3 subdomains and the F1 loop. Upon binding, the intact talin head adopts a novel V-shaped conformation which optimizes its interactions with the membrane. Simulations of the complex of talin with the integrin α/β TM helix dimer in a membrane, show how this complex promotes a rearrangement, and eventual dissociation of, the integrin α and β transmembrane helices. A model for the talin-mediated integrin activation is proposed which describes how the mutual interplay of interactions between transmembrane helices, the cytoplasmic talin protein, and the lipid bilayer promotes integrin inside-out activation.  相似文献   

7.
Integrin αIIbβ3 affinity regulation by talin binding to the cytoplasmic tail of β3 is a generally accepted model for explaining activation of this integrin in Chinese hamster ovary cells and human platelets. Most of the evidence for this model comes from the use of multivalent ligands. This raises the possibility that the activation being measured is that of increased clustering of the integrin rather than affinity. Using a newly developed assay that probes integrins on the surface of cells with only monovalent ligands prior to fixation, I do not find increases in affinity of αIIbβ3 integrins by talin head fragments in Chinese hamster ovary cells, nor do I observe affinity increases in human platelets stimulated with thrombin. Binding to a multivalent ligand does increase in both of these cases. This assay does report affinity increases induced by either Mn2+, a cytoplasmic domain mutant (D723R) in the cytoplasmic domain of β3, or preincubation with a peptide ligand. These results reconcile the previously observed differences between talin effects on integrin activation in Drosophila and vertebrate systems and suggest new models for talin regulation of integrin activity in human platelets.  相似文献   

8.
Regulation of integrin affinity (activation) is essential for metazoan development and for many pathological processes. Binding of the talin phosphotyrosine-binding (PTB) domain to integrin beta subunit cytoplasmic domains (tails) causes activation, whereas numerous other PTB-domain-containing proteins bind integrins without activating them. Here we define the structure of a complex between talin and the membrane-proximal integrin beta3 cytoplasmic domain and identify specific contacts between talin and the integrin tail required for activation. We used structure-based mutagenesis to engineer talin and beta3 variants that interact with comparable affinity to the wild-type proteins but inhibit integrin activation by competing with endogenous talin. These results reveal the structural basis of talin's unique ability to activate integrins, identify an interaction that could aid in the design of therapeutics to block integrin activation, and enable engineering of cells with defects in the activation of multiple classes of integrins.  相似文献   

9.
Activated chemokine receptor initiates inside-out signaling to transiently trigger activation of integrins, a process involving multiple components that have not been fully characterized. Here we report that GM-CSF/IL-3/IL-5 receptor common beta-chain-associated protein (CBAP) is required to optimize this inside-out signaling and activation of integrins. First, knockdown of CBAP expression in human Jurkat T cells caused attenuated CXC chemokine ligand-12 (CXCL12)-induced cell migration and integrin α4β1- and αLβ2-mediated cell adhesion in vitro, which could be rescued sufficiently upon expression of murine CBAP proteins. Freshly isolated CBAP-deficient primary T cells also exhibited diminution of chemotaxis toward CC chemokine ligand-21 (CCL21) and CXCL12, and these chemokines-induced T-cell adhesions in vitro. Adoptive transfer of isolated naive T cells demonstrated that CBAP deficiency significantly reduced lymph node homing ability in vivo. Finally, migration of T cell-receptor–activated T cells induced by inflammatory chemokines was also attenuated in CBAP-deficient cells. Further analyses revealed that CBAP constitutively associated with both integrin β1 and ZAP70 and that CBAP is required for chemokine-induced initial binding of the talin-Vav1 complex to integrin β1 and to facilitate subsequent ZAP70-mediated dissociation of the talin-Vav1 complex and Vav1 phosphorylation. Within such an integrin signaling complex, CBAP likely functions as an adaptor and ultimately leads to activation of both integrin α4β1 and Rac1. Taken together, our data suggest that CBAP indeed can function as a novel signaling component within the ZAP70/Vav1/talin complex and plays an important role in regulating chemokine-promoted T-cell trafficking.  相似文献   

10.
Integrins are the major cell adhesion molecules responsible for cell attachment to the extracellular matrix. The strength of integrin-mediated adhesion is controlled by the affinity of individual integrins (integrin activation) as well as by the number of integrins involved in such adhesion. The positive correlation between integrin activation and integrin clustering had been suggested previously, but several trials to induce integrin clustering by dimerization of the transmembrane domain or tail region of integrin α subunits failed to demonstrate any change in integrin activation. Here, using platelet integrin αIIbβ3 as a model system, we showed that there is intermolecular lateral interaction between integrins through the transmembrane domains, and this interaction can enhance the affinity state of integrins. In addition, when integrin clustering was induced through heteromeric lateral interactions using bimolecular fluorescence complementation, we could observe a significant increase in the number of active integrin molecules. Because the possibility of intermolecular interaction would be increased by a higher local concentration of integrins, we propose that integrin clustering can shift the equilibrium in favor of integrin activation.  相似文献   

11.
Cell migration is a dynamic process that involves the continuous formation, maturation, and turnover of matrix-cell adhesion sites. New (nascent) adhesions form at the protruding cell edge in a tension-independent manner and are comprised of integrin receptors, signaling, and cytoskeletal-associated proteins. Integrins recruit focal adhesion kinase (FAK) and the cytoskeletal protein talin to nascent adhesions. Canonical models support a role for talin in mediating FAK localization and activation at adhesions. Here, alternatively, we show that FAK promotes talin recruitment to nascent adhesions occurring independently of talin binding to β1 integrins. The direct binding site for talin on FAK was identified, and a point mutation in FAK (E1015A) prevented talin association and talin localization to nascent adhesions but did not alter integrin-mediated FAK recruitment and activation at adhesions. Moreover, FAK E1015A inhibited cell motility and proteolytic talin cleavage needed for efficient adhesion dynamics. These results support an alternative linkage for FAK-talin interactions within nascent adhesions essential for the control of cell migration.  相似文献   

12.
Integrin affinity is modulated by intracellular signaling cascades, in a process known as "inside-out" signaling, leading to changes in cell adhesion and motility. Protein kinase C (PKC) plays a critical role in integrin-mediated events; however, the mechanism that links PKC to integrins remains unclear. Here, we report that PKCepsilon positively regulates integrin-dependent adhesion, spreading, and motility of human glioma cells. PKCepsilon activation was associated with increased focal adhesion and lamellipodia formation as well as clustering of select integrins, and it is required for phorbol 12-myristate 13-acetate-induced adhesion and motility. We provide novel evidence that the scaffolding protein RACK1 mediates the interaction between integrin beta chain and activated PKCepsilon. Both depletion of RACK1 by antisense strategy and overexpression of a truncated form of RACK1 which lacks the integrin binding region resulted in decreased PKCepsilon-induced adhesion and migration, suggesting that RACK1 links PKCepsilon to integrin beta chains. Altogether, these results provide a novel mechanistic link between PKC activation and integrin-mediated adhesion and motility.  相似文献   

13.
The activation of integrin adhesion receptors from low to high affinity in response to intracellular cues controls cell adhesion and signaling. Binding of the cytoskeletal protein talin to the beta3 integrin cytoplasmic tail is required for beta3 activation, and the integrin-binding PTB-like F3 domain of talin is sufficient to activate beta3 integrins. Here we report that, whereas the conserved talin-integrin interaction is also required for beta1 activation, and talin F3 binds beta1 and beta3 integrins with comparable affinity, expression of the talin F3 domain is not sufficient to activate beta1 integrins. beta1 integrin activation could, however, be detected following expression of larger talin fragments that included the N-terminal and F1 domains, and mutagenesis indicates that these domains cooperate with talin F3 to mediate beta1 activation. This effect is not due to increased affinity for the integrin beta tail and we hypothesize that the N-terminal domains function by targeting or orienting talin in such a way as to optimize the interaction with the integrin tail. Analysis of beta3 integrin activation indicates that inclusion of the N-terminal and F1 domains also enhances F3-mediated beta3 activation. Our results therefore reveal a role for the N-terminal and F1 domains of talin during integrin activation and highlight differences in talin-mediated activation of beta1 and beta3 integrins.  相似文献   

14.
The leukocyte integrin LFA-1 plays a critical role in T cell trafficking and T cell adhesion to APCs. It is known that integrin-mediated adhesion is regulated by changes in integrin ligand-binding affinity and valency through inside-out signaling. However, the molecular mechanisms involved in TCR-mediated LFA-1 regulation are not well understood. In this study, we show that the cytoskeletal protein talin1 is required for TCR-mediated activation of LFA-1 through regulation of LFA-1 affinity and clustering. Depletion of talin1 from human T cells by small interfering RNAs impairs TCR-induced adhesion to ICAM-1 and T cell-APC conjugation. TCR-induced LFA-1 polarization, but not actin polarization, is defective in talin1-deficient T cells. Although LFA-1 affinity is also reduced in talin1-deficient T cells, rescue of LFA-1 affinity alone is not sufficient to restore LFA-1 adhesive function. Together, our findings indicate that TCR-induced up-regulation of LFA-1-dependent adhesiveness and resulting T cell-APC conjugation require talin1.  相似文献   

15.
Integrins are large membrane-spanning receptors fundamental to cell adhesion and migration. Integrin adhesiveness for the extracellular matrix is activated by the cytoskeletal protein talin via direct binding of its phosphotyrosine-binding-like F3 domain to the cytoplasmic tail of the β integrin subunit. The phosphotyrosine-binding domain of the signaling protein Dok1, on the other hand, has an inactivating effect on integrins, a phenomenon that is modulated by integrin tyrosine phosphorylation. Using full-length tyrosine-phosphorylated 15N-labeled β3, β1A, and β7 integrin tails and an NMR-based protein-protein interaction assay, we show that talin1 binds to the NPXY motif and the membrane-proximal portion of β3, β1A, and β7 tails, and that the affinity of this interaction is decreased by integrin tyrosine phosphorylation. Dok1 only interacts weakly with unphosphorylated tails, but its affinity is greatly increased by integrin tyrosine phosphorylation. The Dok1 interaction remains restricted to the integrin NPXY region, thus phosphorylation inhibits integrin activation by increasing the affinity of β integrin tails for a talin competitor that does not form activating membrane-proximal interactions with the integrin. Key residues governing these specificities were identified by detailed structural analysis, and talin1 was engineered to bind preferentially to phosphorylated integrins by introducing the mutation D372R. As predicted, this mutation affects talin1 localization in live cells in an integrin phosphorylation-specific manner. Together, these results indicate that tyrosine phosphorylation is a common mechanism for regulating integrin activation, despite subtle differences in how these integrins interact with their binding proteins.  相似文献   

16.
The ability of integrin adhesion receptors to undergo rapid changes in affinity for their extracellular ligands (integrin activation) is essential for the development and function of multicellular animals and is dependent on interactions between the integrin beta subunit-cytoplasmic tail and the cytoskeletal protein talin. Cross-talk among different integrins and between integrins and other receptors impacts many cellular processes including adhesion, spreading, migration, clot retraction, proliferation, and differentiation. One form of integrin cross-talk, transdominant inhibition of integrin activation, occurs when ligand binding to one integrin inhibits the activation of a second integrin. This may be relevant clinically in a number of settings such as during platelet adhesion, leukocyte trans-migration, and angiogenesis. Here we report that competition for talin underlies the trans-dominant inhibition of integrin activation. This conclusion is based on our observations that (i). beta tails selectively defective in talin binding are unable to mediate trans-dominant inhibition, (ii). trans-dominant inhibition can be reversed by overexpression of integrin binding and activating fragments of talin, and (iii). expression of another non-integrin talin-binding protein, phosphatidylinositol phosphate kinase type Igamma-90, also inhibits integrin activation. Thus, the sequestration of talin by the suppressive species is both necessary and sufficient for trans-dominant inhibition of integrin activation.  相似文献   

17.
The globular head domain of talin, a large multi-domain cytoplasmic protein, is required for inside-out activation of the integrins, a family of heterodimeric transmembrane cell adhesion molecules. Talin head contains a FERM domain that is composed of F1, F2, and F3 subdomains. A F0 subdomain is located N-terminus to F1. The F3 contains a canonical phosphotyrosine binding (PTB) fold that directly interacts with the membrane proximal NPxY/F motif in the integrin β cytoplasmic tail. This interaction is stabilized by the F2 that interacts with the lipid head-groups of the plasma membrane. In comparison to F2 and F3, the properties of the F0F1 remains poorly characterized. Here, we showed that F0F1 is essential for talin-induced activation of integrin αLβ2 (LFA-1). F0F1 has a high content of β-sheet secondary structure, and it tends to homodimerize that may provide stability against proteolysis and chaotrope induced unfolding.  相似文献   

18.
T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin.  相似文献   

19.
The phosphotyrosine binding-like domain of talin activates integrins   总被引:1,自引:0,他引:1  
Cellular regulation of the ligand binding affinity of integrin adhesion receptors (integrin activation) depends on the integrin beta cytoplasmic domains (tails). The head domain of talin binds to several integrin beta tails and activates integrins. This head domain contains a predicted FERM domain composed of three subdomains (F1, F2, and F3). An integrin-activating talin fragment was predicted to contain the F2 and F3 subdomains. Both isolated subdomains bound specifically to the integrin beta3 tail. However, talin F3 bound the beta3 tail with a 4-fold higher affinity than talin F2. Furthermore, expression of talin F3 (but not F2) in cells led to activation of integrin alpha(IIb)beta3. A molecular model of talin F3 indicated that it resembles a phosphotyrosine-binding (PTB) domain. PTB domains recognize peptide ligands containing beta turns, often formed by NPXY motifs. NPX(Y/F) motifs are highly conserved in integrin beta tails, and mutations that disrupt this motif interfere with both integrin activation and talin binding. Thus, integrin binding to talin resembles the interactions of PTB domains with peptide ligands. These resemblances suggest that the activation of integrins requires the presence of a beta turn at NPX(Y/F) motifs conserved in integrin beta cytoplasmic domains.  相似文献   

20.
The activation of heterodimeric integrin adhesion receptors from low to high affinity states occurs in response to intracellular signals that act on the short cytoplasmic tails of integrin β subunits. Binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to the integrin β tail provides one key activation signal, but recent data indicate that the kindlin family of FERM domain proteins also play a central role. Kindlins directly bind integrin β subunit cytoplasmic domains at a site distinct from the talin-binding site, and target to focal adhesions in adherent cells. However, the mechanisms by which kindlins impact integrin activation remain largely unknown. A notable feature of kindlins is their similarity to the integrin-binding and activating talin FERM domain. Drawing on this similarity, here we report the identification of an unstructured insert in the kindlin F1 FERM domain, and provide evidence that a highly conserved polylysine motif in this loop supports binding to negatively charged phospholipid head groups. We further show that the F1 loop and its membrane-binding motif are required for kindlin-1 targeting to focal adhesions, and for the cooperation between kindlin-1 and -2 and the talin head in αIIbβ3 integrin activation, but not for kindlin binding to integrin β tails. These studies highlight the structural and functional similarities between kindlins and the talin head and indicate that as for talin, FERM domain interactions with acidic membrane phospholipids as well β-integrin tails contribute to the ability of kindlins to activate integrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号